
Words Technical
Reference Guide

ii Words Technical Reference

COPYRIGHT NOTICE ON THE VERSION 5.0 SOFTWARE
©1990 - 2000 Applix, Inc. All Rights Reserved.

Applix, Inc. prepared the information contained in this document for use by Applix personnel, customers, and prospects. Applix
reserves the right to change the information in this document without prior notice. The contents herein should not be construed as
a representation or warranty by Applix. Applix assumes no responsibility for any errors that may appear in this document.

The Proximity Thesauri ®
©2000 Merriam-Webster Inc.

©2000 Williams Collins Sons & Co. Ltd. ©2000 Van Dale Lexicografie bv. ©2000 Nathan. ©2000 Kruger.
©2000 Zanichelli. ©2000 International Data Education a s. ©2000 C.A. Stromber A B. ©2000 Espasa-Calpe.

©1983-2000. Proximity Technology, Inc.
All Rights Reserved

The Proximity Linguibase And Hyphenation Systems®
©2000 Merriam-Webster Inc.

©2000 Williams Collins Sons & Co. Ltd. ©2000, Van Dale Lexicografie bv.
©2000 Munksgaard International Publishers Ltd. ©2000, International Data Education a s.

©1983-2000 Proximity Technology, Inc.
 All Rights Reserved

©1989-2000 Blueberry Software, Inc.
All Rights Reserved

The Applix Graphics Filter Pack contains elements of the Generator Metafile Development Libraries (MDL/G)
©1988-2000 Henderson Software, Inc.

All Rights Reserved

©2000, T/Maker Company
Clickart and T/Maker are registered trademarks of T/Maker Company

All Rights Reserved Worldwide

©2000, Gallium Software, Inc.
FontTastic is a trademark of Gallium Software, Inc.

All Rights Reserved

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth

in subparagraphs (c) (1) (ii) of SFARS 252.277-7013, or in FAR 52.227-19, as applicable.

Hardware and software products mentioned herein are used for identification
 purposes only and may be trademarks of their respective companies.

Applix is a registered trademark of Applix, Inc. Applixware, Applix Real Time, Applix
Data, and Applix Builder are trademarks of Applix, Inc.

This manual was produced using Applixware.

Printed: April 2000

Contents iii

Contents

Preface

About This Manual . xiii

Conventions Used in This Manual. xiii

Applixware Window Environment and Interfacexv

Chapter 1 File Format

Statement Syntax . 1-2

File Header . 1-3

Embedded Data . 1-5

Links . 1-5

Maximum Line Length. 1-5

Continuation Lines . 1-5

Wide and Multi-Byte Characters. 1-6

Escape characters. 1-7

Comment Lines . 1-8

Applix Words Statements . 1-9

Items . 1-9

Example Statement Definition. 1-10

iv Words Technical Reference

Variable Types . 1-11

Sequence of Statements in Words. 1-13

CELL_END . 1-15

COLOR . 1-18

COLUMN_BREAK . 1-18

DOC_VARIABLE. 1-18

DOCUMENT_BEGIN . 1-19

DOCUMENT_END . 1-20

EQUATION . 1-21

ERROR . 1-21

FIELD_BEGIN . 1-21

FIELD_END . 1-22

FIELD_VALUE. 1-22

FLOW_BEGIN . 1-22

FLOW_END . 1-23

FOOTNOTE_BEGIN . 1-23

FOOTNOTE_END . 1-23

GLOSSARY_BEGIN. 1-23

GLOSSARY_END . 1-24

GRAPHICS . 1-24

HDRFTR_BEGIN . 1-24

HDRFTR_END . 1-25

LINE_BREAK . 1-25

LINK . 1-25

MARKER. 1-25

Contents v

OBJECT. 1-25

PAGE_BREAK . 1-28

PARA . 1-28

PICTURE . 1-29

ROW_START . 1-34

SECTION . 1-35

SERIES . 1-43

STYLE . 1-46

STYLES_BEGIN. 1-47

STYLES_END. 1-47

TEXT . 1-47

VARS_BEGIN . 1-48

VARS_END . 1-48

Supported Properties . 1-48

appTypeCode. 1-48

Equation File Format . 1-58

Equation Statements . 1-59

DOCUMENT_BEGIN . 1-59

DOCUMENT_END. 1-59

EQUATION_BEAD_END . 1-59

EQUATION_BEAD_START . 1-59

EQUATION_BEGIN . 1-59

EQUATION_END. 1-59

EQUATION_SETTINGS. 1-60

TEMPLATE . 1-61

vi Words Technical Reference

Equation Properties . 1-61

matrixColAlign. 1-61

matrixRowAlign. 1-61

pileAlign . 1-62

symbol . 1-62

symbolAttributes . 1-63

templateType . 1-63

More Information on Templates . 1-65

Chapter 2 Technical Terms

Technical Terms . 2-2

Bead . 2-3

Bead Number . 2-5

Cell . 2-6

Column, Table . 2-8

Current Selection . 2-9

Cursor . 2-9

Embedded Object. 2-10

Evaluation . 2-11

Field . 2-12

Field Method. 2-13

Field Value . 2-14

Flow . 2-14

Footnote. 2-15

Contents vii

Form and Form Mode (Beginning at Version 4) 2-16

Frame . 2-18

Glossary Definition & Glossary Field. 2-19

Header & Footer . 2-20

Inherited Attributes . 2-22

Inset . 2-22

Level . 2-22

Linked Object. 2-24

Local Attributes . 2-25

Localize . 2-26

Location . 2-27

Marker Bead. 2-28

Main Flow. 2-29

Multi-Cell Selection. 2-29

Object . 2-31

Object Bead. 2-33

Offset . 2-34

Paragraph and Paragraph Bead . 2-35

Paragraph Marker . 2-36

Picture . 2-36

Range . 2-38

Redo . 2-39

Row and Row Start Bead . 2-39

Section . 2-41

Selection . 2-44

viii Words Technical Reference

Series Definition & Series Field . 2-44

Simple Selection . 2-45

Style . 2-46

Table . 2-48

Tag . 2-48

Text Bead. 2-50

Undo and Redo . 2-51

Chapter 3 Field Method Syntax

Field Methods . 3-2

Field Evaluation . 3-2

Field Method Syntax Conventions . 3-3

Error Handling . 3-3

Common Flags . 3-4

evalFlags . 3-4

textStyle Flag. 3-5

Conditional Variable Field. 3-6

Cross Reference Field . 3-7

Cross Reference Source Field . 3-9

Date Field . 3-10

Entry Field . 3-12

Footnote Field . 3-15

Footnote Body Field . 3-16

Glossary Field . 3-17

Contents ix

HTML Tag Field . 3-18

Hyperlink Field. 3-19

Hypertarget Field . 3-20

Index Field. 3-21

Link Field. 3-22

Local Inset Field . 3-26

Macro Field . 3-28

Macro String Field . 3-30

Make Index Field . 3-31

Make Table of Contents Field . 3-32

Merge Field . 3-34

Page Count Field . 3-36

Page Number Field . 3-36

Plain Field . 3-37

Printer Code Field . 3-38

Series Field. 3-39

Soft Hyphen Field. 3-41

Time Field . 3-42

Variable String Field . 3-43

x Words Technical Reference

Tables

Table 1-1 Escape Sequences in Quoted Strings 1-7

Table 1-2 Statement Elements . 1-10

Table 1-3 Variable Types . 1-11

Table 1-4 CELL_END Comments . 1-15

Table 1-5 COLOR Comments . 1-18

Table 1-6 DOCUMENT_BEGIN Comments . 1-19

Table 1-7 FIELD_BEGIN Comments . 1-21

Table 1-8 FOOTNOTE_BEGIN Comments . 1-23

Table 1-9 GLOSSARY_BEGIN Comments. 1-23

Table 1-10 GRAPHICS Comments . 1-24

Table 1-11 HDRFTR_BEGIN Comments . 1-24

Table 1-12 LINK Comments . 1-25

Table 1-13 OBJECT Comments . 1-26

Table 1-14 PAGE_BREAK Comments . 1-28

Table 1-15 PARA Comments . 1-28

Table 1-16 PICTURE Comments . 1-29

Table 1-17 ROW_START Comments . 1-34

Table 1-18 SECTION Comments . 1-36

Contents xi

Table 1-19 SERIES Comments. 1-44

Table 1-20 STYLE Comments . 1-46

Table 1-21 TEXT Comments . 1-48

Table 1-22 elfString Comments. 1-52

Table 1-23 frameAttributes Comments . 1-53

Table 1-24 hdrFtrReference Comments . 1-54

Table 1-25 paraAttributes Comments . 1-55

Table 1-26 tabDefinitions Comments. 1-56

Table 1-27 tabStop Comments . 1-57

Table 1-28 textAttributes Comments . 1-58

Table 1-29 Equation Setting Defaults . 1-60

Table 1-30 symbolAttribute Defaults . 1-63

Table 1-31 Template Descriptions . 1-65

Table 2-1 Object Types . 2-32

Table 3-1 evalFlags . 3-4

Table 3-2 directionFlags . 3-8

Table 3-3 pageFlag . 3-8

Table 3-4 Date Formats . 3-11

Table 3-5 caseFlag . 3-13

Table 3-6 appTypeCode Flags. 3-23

Table 3-7 -pass Packaging . 3-28

Table 3-8 -pass Packaging . 3-30

Table 3-9 groupSeparators . 3-31

Table 3-10 beforePageNum Flags . 3-32

Table 3-11 printerType . 3-38

xii Words Technical Reference

Table 3-12 Printer codes . 3-38

Table 3-13 valueFlags . 3-40

Table 3-14 View Field Method Modes . 3-40

Table 3-15 Time Formats . 3-42

Table 3-16 Variable Types . 3-44

xiii

Preface

About This Manual

This manual describes aspects of Applix Words that advanced ELF
programmers may need to use. The topics discussed are:

• The Applix Words file format. This is the format used to store an
ASCII representation of a Words file on disk.

• Technical terms. This chapter is a high-level glossary.

• Fields. This contains a definition of every field that can be inserted
into an Applix Words file.

Conventions Used in This Manual

The following typeface conventions are used throughout this manual:

Helvetica Helvetica text indicates that this option or object
appears in the document window. For example,
"Type the name of the document in the File name
entry area."

File names and directories are also indicated by
Helvetica text. For example, "The new

Conventions Used in This Manual

xiv Words Technical Reference

Applixware version is installed in your axlocal
directory."

Applixware keys are printed in a Helvetica
uppercase typeface. For example, "Press the TAB
key."

Helvetica Bold Bold Helvetica text indicates an option to choose
or text to type. It usually appears in numbered
steps as shown in the following example:

1. Type 2.5 in the Line spacing entry area.

2. Click Apply.

Italics Words are italicized for emphasis or to draw your
attention to a new term. For example, "Do not
press the RETURN key," or "This action is called
word wrapping."

Italic type is also used to indicate variable
information, as in "Put Applixware in the
/user/your_name directory."

 Applixware Window Environment and Interface

Preface xv

Menu Name ➝
Option Name

Whenever you see a reference to a menu option,
the option is identified using the following
notation:

Menu Name ➝ Option Name

For example, "Choose File ➝ Save."

OK and Apply When numbered instructions are included in the
text, we omit the final "Click OK or Apply"
statement for brevity.

Applixware Window Environment and Interface

Consult your window manager and hardware documentation if you
need information about how to operate in your window environment.

Applixware Window Environment and Interface

xvi Words Technical Reference

1-1

1 File Format

This chapter describes the generic ASCII file format of all
Version 4.3 and later Applixware documents and the
Applix Words internal ASCII file format. These formats
consist of statements and properties that define all of the
text, graphics, formatting, and layout constructs of an
Applixware document.

The following topics are described:

• An explanation of the document conventions used in
this chapter.

• A description of the Version 4.3/4.4/5.0 file format for
Applix Words.

• A description of the supported Applix Words
statements and their properties.

Statement Syntax

1-2 Words Technical Reference

Statement Syntax

In the following listing of statements, these conventions apply:

UPPERCASE Courier uppercase indicates an actual statement. At
this point, turn to the "Statements Reference" later in
this chapter to look up the exact syntax of the
statement.

Example: DOCUMENT_BEGIN is a self-contained
statement and may be found in the "Statements
Reference."

italic Courier italic indicates a statement group.

When you reach an italic entry, look further down
the list to see the statements that make up the group.

Example:

The document group outlines the overall structure
of the document file. Within the document
structure, the definitions entry indicates a group
of statements that defines items for the entire
document. Look under definitions in the left
column for the statements that make up the
definitions group.

{ braces } Braces indicate a required entry; that is, you must
choose one of the indicated elements.

[brackets] Brackets indicate an optional entry, which may or
may not appear in the document.

File Header

File Format 1-3

Example:

[object_definition]

This entry appears in the file only if one or more
objects are included in the document.

... (ellipse) Any entry followed by an ellipse (...) indicates that
the statement or group may be repeated any number
of times.

Example:

paragraph...

This shows that the statement group can contain any
number of paragraphs.

vertical | bar A vertical bar between items indicates that the
document entry includes one of the options.

Example:

object_definition = OBJECT | GRAPHICS

This indicates that the object_definition
section can include one of the keywords OBJECT or
GRAPHICS.

File Header

The first line of the file is a header line that identifies the file as an
Applixware file, specifies the encoding method and gives the
Applixware version number.

1 Was *START in releases prior to Release 4.

File Header

1-4 Words Technical Reference

The file header is:

*BEGIN1 datatype VERSION=version
 [ENCODING=encoding] [C=content]
 [future data elements]

The last line of the file is

*END datatype

The following defines these elements:

content = This field depends on the datatype field. It gives further
information about the content of the file.

datatype = WORDS | GRAPHICS | SPREADSHEETS |
QUERYDATA | MACROS | EQUATIONS | ASCII |
BINARY

The significance of datatype is that you know how to
process each of these types of contents. The data in the
Applixware file is encoded to prevent accidental asterisk
(*) lines from occurring. Datatype sections that are
unknown to this version are skipped.

ASCII and BINARY are two different encodings for
arbitrary data, such as local foreign insets in an Applix
Words application. This is used for foreign insets. ASCII
provides a base level of readability in the Applixware
file; however, it does not provide any more or less
information than BINARY.

version = Should be 430 for a file in Release 4.3 format or 440 for a
file in Release 4.4 format (both are documented here).
311 was used for a file in Release 3 format.

File Header

File Format 1-5

Embedded Data

For embedded data, use *BEGIN and *END to delimit the data.

Links

For each external link in the file, a LINK statement must appear
somewhere in the file to permit a simple scan for links.

*LINK pathname

Maximum Line Length

Programs that write files should write short lines (at most 80 characters)
for the convenience of people using text editors. Programs that read files
should be able to handle lines as long as 4090 characters. If a statement
needs to be longer than the desired line length, the continuation line
format is used.

Continuation Lines

An application is free to define how continuation lines are handled
within its data segment. The one restriction is that the first character of a
line is never an asterisk.

In Words, if a statement is longer than the standard line length (80
characters for files written by Words), it is broken into multiple lines. A
backslash is added to the end of each line (except for the last line). A
space is added to the start of each line after the first line. The lines are
rejoined and these backslashes and spaces are discarded when Words
reads the file.

NOTE: If a Words document contains embedded Applixware objects,
the application that owns the object determines the continuation line
format for that object.

File Header

1-6 Words Technical Reference

Wide and Multi-Byte Characters

8-bit and 16-bit characters should, be default, be encoded in the output
file so that the files are 8-bit clean (that is, the file contains only 7-bit
characters). Such files will have the token "ENCODING=7BIT" in their
*BEGIN header lines (as would Applixware objects embedded within
Applixware files).

Here are the algorithms for folding 8- and 16-bit characters into 7 bits.

For both algorithms, the carat character ’^’ is used as an escape character
to signal the start of an 8- or 16-bit character. To output a real carat
character, escape it with another carat (i.e. double it). For example, given
the following string in a Words document:

Here is a single carat: ^

The following line would appear in the Words file:

<Text "Here is a single carat: ^^">

8-bit characters

Assume a hexadecimal system where ’a’ represents 0, ’b’ is 1, ... ’p’ is 15.
An 8-bit character is represented as a carat character followed by a pair
of these "hex letters". For example, the tab character (character code 9) is
represented as "^aj", where a=0, j=9, and thus (0 * 16) + 9 = 9. The (US)
cents character ("¢"), which is code 162, is represented as "^kc", where
k=10, c=2, and thus (10 * 16) + 2 = 162.

Any 8-bit character larger or equal to 128, or smaller than 32 (but
excluding character 10, the line break) is output in this format. Character
code 10 is output as "\n". Any other character is output in its ASCII
representation.

File Header

File Format 1-7

16-bit characters

For character codes less than 256, the 8-bit system is used as described
above. For character codes greater than 256, a system is used where
space is 0, ’!’ is 1, ... underscore is 63. However, the backquote (code 96)
is used to represent 2 instead of the double quote. The overall
representation is of the form ^XYY, where X is a 6-bit value in this
system, and Y is a 5-bit value. Thus the largest possible 16-bit code
(65535) would be represented as "^_??", where _=63, ?=31, and thus (63 *
1024) + (31 * 32) + 31 = 65535. The character code 256 is not used in this
system.

Note there is no intersection between the codes used to represent 8-bit
values (a-p) and the codes used to represent 16-bit values (space to
underscore, plus back quote). Following an unescaped carat you should
either see a pair of 8-bit codes or a triple of 16-bit codes.

Escape characters

An application is free to support escape characters, in addition to the
carat as described above.

In a Words file, the backslash character ’\’ is used as an escape character
within quoted strings. Backslashes and double quotes must be escaped.
"\n" represents a line break.

The following table describes the supported escape sequences in quoted
strings within a Words file:

Table 1-1 Escape Sequences in Quoted Strings

Appearance in File Meaning

\\ Backslash within string

\" Double quote within string

\n Newline within string

File Header

1-8 Words Technical Reference

Comment Lines

Lines that start with ** are comments; they have no inherent semantics.
However, they are treated as significant in that applications will preserve
them.

A comment line can contain any legal Applix character. The comment
cannot be longer than one line.

Comments can be inserted at the beginning of any line within a
document. When a document is stored by an Applix application, all
Applixware comments are written to the stored image immediately
following the *BEGIN line of the document. Comments within
embedded data remain within that data and are not moved to the start of
the file.

Third party developers and users can attach their own semantics and
additional syntax to comments. Applix strongly suggests that developers
adhere to the following conventions:

• A structured comment will consist of the following sequence:

** "keyword" string

keyword is an agreed upon sequence of case sensitive characters
enclosed in quotes and string is any sequence of legal characters
terminated by the end of the line.

• All Applix keywords begin with one of the following strings: ax, Ax,
or AX. These strings are reserved for Applix’s use.

Applix Words Statements

File Format 1-9

Applix Words Statements

This section describes Applix Words statements. Most statements consist
of:

1. A left angle bracket

2. A keyword

3. A sequence of items

4. A terminating right angle bracket

When an item appears, it must appear in the order specified. For
example:

< keyword
item1
item2

>

Items

There are three types of items that can be used in statement syntax:

Literal text Literal text is indicated by Courier text. It is to be
specified exactly as shown.

Variables Variables are represented by Courier italic text,
followed by the type of the variable in parenthesis.
A number or string of the appropriate type should
be provided.

Property
reference

A property reference is represented by mixed-case
Courier italic. The property is either described
immediately below the statement syntax description

Applix Words Statements

1-10 Words Technical Reference

or in the "Supported Properties" section later in this
chapter.

Unless otherwise indicated, the items within the statements are optional
and have a default value when not specified.

Example Statement Definition

< ice_cream /* abbrev: i_c */
jimmies | nuts
scoops :numscoops(int)
flavor :flavorName

>
flavorName = "Vanilla" | "Chocolate"

The following table describes each of the components of the statements:

Table 1-2 Statement Elements

Element Meaning

< Opening bracket

ice_cream May substitute a short form here: for
example, i_c

jimmies | nuts Can specify either of these literals

scoops: numscoops(int) Literal followed by variable

flavor: flavorName Mixed case, no type: must be a property

> Closing bracket

flavorName = "Vanilla" | "Chocolate" The property definition.

If the property definition is not
included immediately below the
statement definition, look up the
property in the "Supported Properties"
section later in this chapter.

Applix Words Statements

File Format 1-11

Using this definition, we can derive the following legal statements:

<ice_cream>

Uses all defaults.

<i_c scoops:1>

Uses the keyword abbreviation.

<ice_cream jimmies scoops:2 flavor:"Vanilla">

Includes a literal (jimmies), a variable (scoops), and a property (flavor).
Spaces around the colons are optional.

If an item is omitted, default values are used. The default is either
described in a comment or can be assumed to be one of the following:

• Zero

• Not present

• FALSE

Variable Types

The following variable types are used in this chapter:

Table 1-3 Variable Types

Type Meaning

float Floating point number. This is a
number greater than or equal to zero
unless otherwise indicated.

int An integer. This is a number greater
than or equal to zero unless otherwise
indicated.

Applix Words Statements

1-12 Words Technical Reference

Table 1-3 Variable Types (cont.)

Type Meaning

mils Units of 1/1000th of an inch. This is a
positive integer unless otherwise
indicated.

points Text size (72 points to the inch). This
should be a positive integer.

string A text string in double quotes; for
example, "Vanilla" . The backslash
(\) is used as an escape character in
quoted strings in a Words file. Double
quotes (") must be escaped, as are
backslashes used in the text. The
newline character (code 10) is
represented as "\n ". See "Wide and
Multi-byte Characters" earlier in this
chapter for a discussion of the
treatment of other 8-bit and special
characters.

As an example, given the following
string in a Words document:

The character "\" is a
backslash
The following line would appear in
the Words file:

<Text "The character
\"\\\" is a backslash">

All other units are described in context.

2MARKER beads did not exist until release 4.

Sequence of Statements in Words

File Format 1-13

Sequence of Statements in Words

The following example displays the sequence of statements in a Words
document. These statements are explained in detail in the sections
following this example, listed in alphabetical order:

document = DOCUMENT_BEGIN
definitions
FLOW_BEGIN
[contents]...
paragraph /* Minimum flow contents is one

PARA */
SECTION
FLOW_END
[secondary_flow]...
[object_definition]...
variables
DOCUMENT_END

definitions = STYLES_BEGIN
STYLE /* Top-level style */
[STYLE | SERIES | COLOR | glossary]...
STYLES_END

glossary = GLOSSARY_BEGIN
[contents | material]...
GLOSSARY_END

contents = paragraph | row

paragraph = [material]...
PARA

material = field | TEXT | PICTURE | break | MARKER2 |
ERROR | EQUATION

row = ROW_START
cell... /* Last cell specially

marked as such */
cell = paragraph.../* No frames or

Sequence of Statements in Words

1-14 Words Technical Reference

section/column/page breaks
allowed */

/* Cell must end with PARA */
CELL_END

field = FIELD_BEGIN
material /* Field method - defines field;

see Chapter 3, "Field Method
Syntax." */

LINK /* Required for linked objects;
omit for others */

FIELD_VALUE
/* Field value - contents of

field */
[contents | material]...
FIELD_END

break = LINE_BREAK | COLUMN_BREAK | SECTION | PAGE_BREAK

secondary_flow =
hdr_ftr | footnote

object_definition =
OBJECT | GRAPHICS

variables = VARS_BEGIN
[DOC_VARIABLE]...
VARS_END

hdr_ftr =HDRFTR_BEGIN
[contents]...
paragraph /* Must end with PARA */
HDRFTR_END

footnote = FOOTNOTE_BEGIN
field /* ...of type Footnote

Numbering */
[contents]...
paragraph /* Must end with PARA */
FOOTNOTE_END

NOTE: The TEXT statements that make up a field method must contain
specific strings. Field methods are described in Chapter 3.

Sequence of Statements in Words

File Format 1-15

CELL_END

< cell_end /* abbrev: CE */
width :width(mils)
[center | bottom]
[leftCellMargin :margin(mils)] /* abbrev: lm */
[rightCellMargin :margin(mils)] /* abbrev: rm */
[topCellMargin :margin(mils)] /* abbrev: tm */
[bottomCellMargin :margin(mils)] /* abbrev: bm */
[borderAttributes]
[locked]
[id: cell_id(string)]
[nextId: cell_id(string)]
[doubleClickMacro: macro(string)]
[enterMacro: macro(string)]
[exitMacro: macro(string)]
[maxChars: maxChars(int)]
[nextIfFull]
[case: caseCode(int)]
[promptText: promptText(string)]
lastCellInRow /* abbrev: last */

>

The following table describes the items in the CELL_END statement:

Table 1-4 CELL_END Comments

Element Notes

borderAttributes Border and shading properties of the cell. See
"Supported Statements"

case: caseCode(int) Causes the case of text typed into the cell in
Forms mode to be altered as follows:

0 = No change (the default)
1 = Force lowercase
2 = Force uppercase

This item did not exist in releases prior to
release 4.1, and is meaningful only in Forms
mode.

Sequence of Statements in Words

1-16 Words Technical Reference

Table 1-4 CELL_END Comments (cont.)

Element Notes

center | bottom Vertical alignment of material in cell; omit for
default (top)

doubleClickMacro: macro
(string)

The name of an ELF macro that will be executed
when a user double clicks upon a cell in Forms
mode

This item did not exist in releases prior to
release 4, and is meaningful only in Forms
mode.

enterMacro: macro (string) The name of an ELF macro that will be executed
when the cursor moves into a cell in Forms
mode

This item did not exist in releases prior to
release 4, and is meaningful only in Forms
mode.

exitMacro: macro (string) The name of an ELF macro that will be executed
when the cursor leaves a cell while in Forms
mode

This item did not exist in releases prior to
release 4, and is meaningful only in Forms
mode.

id: cell_id (string) An arbitrary string identifying a cell

This item did not exist in releases prior to
release 4.

lastCellInRow This must be specified for the last cell (and only
the last cell) in each row

Sequence of Statements in Words

File Format 1-17

Table 1-4 CELL_END Comments (cont.)

Element Notes

leftCellMargin,
rightCellMargin,
topCellMargin,
bottomCellMargin: margin
(mils)

Space between left/right/top/bottom border of
the cell and material within the cell

locked This only exists if a cell is locked (which means
the cell cannot be selected, entered, or edited in
Forms mode)

This item did not exist in releases prior to
release 4, and is meaningful only in Forms
mode.

maxChars: maxChars(int) Maximum number of characters allowed to be
typed into the cell in Forms mode.

This item did not exist in releases prior to
release 4.1, and is meaningful only in Forms
mode.

nextID: cell_id (string) The id of a cell to which the "Go To Next Cell"
command will move the cursor when in Forms
mode

This item did not exist in releases prior to
release 4, and is meaningful only in Forms
mode.

nextIfFull If present, and if a maxChars value is specified,
when the cursor is in the cell in Forms mode and
the cell becomes "full" (as defined by
maxChars), the cursor is moved to the cell with
the nextID cell id.

This item did not exist in releases prior to
release 4.1, and is meaningful only in Forms
mode.

Sequence of Statements in Words

1-18 Words Technical Reference

Table 1-4 CELL_END Comments (cont.)

Element Notes

promptText: promptText(string) When the cursor enters the cell, this text will be
displayed on the status line at the bottom of the
Words window.

This item did not exist in releases prior to
release 4.1, and is meaningful only in Forms
mode.

width (mils) Overall width of cell, in mils

COLOR

< color
name(string):C:M:Y:K

>

Table 1-5 COLOR Comments

Element Meaning

C: M: Y: K Required. The C, M, Y, and K values are integers
between 0 and 255 representing the cyan, magenta,
yellow, and black values respectively of the color

COLUMN_BREAK

< column_break >

DOC_VARIABLE

< variable
name(string) /* Required */
elfData

>

Sequence of Statements in Words

File Format 1-19

DOCUMENT_BEGIN

*BEGIN WORDS VERSION=vnum ENCODING=encoding
<Applix Words>
< Globals

levelIndent :indent(mils)
hyphMethod: hyphCode
headerMargins :header(mils)
footerMargins :footer(mils)
changeBarPos :barPos
[facingPages]

>

If the beads were contained in a formatted Macro Editor document, the
first statement would be as follows:

*BEGIN MACROS VERSION=vnum ENCODING=encoding

The following table describes items in the DOCUMENT_BEGIN statement:

Table 1-6 DOCUMENT_BEGIN Comments

Element Notes

changeBarPos: barPos barPos is an integer controlling the placement of
change bars in the document. The code numbers
corresponding to the WP#CB#POS# defines in wp_.am
are as follows:

0 = left margin
1 = right margin
2 = outer margin

facingPages If present, the document is in "facing pages" mode;
the main effect is the treatment of the left and right
page margins (see the Section bead, below). Note this
does not imply the document will be printed in
double-sided mode.

Sequence of Statements in Words

1-20 Words Technical Reference

Table 1-6 DOCUMENT_BEGIN Comments (cont.)

Element Notes

footerMargins: footer(mils) Distance between the bottom of the page and the
bottom of the footer, if any

headerMargins: header(mils) Distance between the top of the page and the top of
the header, if any

hyphMethod: hyphcode hyphCode is an integer indicating the method used
to hyphenate words in the dictionary. The code
numbers corresponding to the WP#HYPHENATE#
defines in wp_.am are as follows:

0 = use rules for hyphenation
1 = look in dictionary; if not found, use the

rules
2 = don’t hyphenate.
3 = look in dictionary only
4 = use profiled value (wpSpellEnglishOpts for
English; wpSpellFrenchOpts for French, etc.; profiles
use the HYPH_ defines in wp_.am). This option is
supported as of release 4.4.

levelIndent :indent(mils) Extra indent per para level.

DOCUMENT_END

< end_document >
*END WORDS

If the beads were contained in a formatted Macro Editor document, the
last statement would be:

*END MACROS

Sequence of Statements in Words

File Format 1-21

EQUATION

See "Equation Statements" later in this chapter for more information.

ERROR

Contains compilation error message for an ELF macro document. This
information is not written to or read from a file.

FIELD_BEGIN

< start_field /* abbrev: S_F */
[{ botPage | endDoc } footnote footNoteId(string)]
[date :dateStamp]
[docType :docTypeCode]
[appType :appTypeCode]
[editable]
[outDated]

>

Table 1-7 FIELD_BEGIN Comments

Element Meaning

appType :appTypeCode Only used for linked or embedded object fields;
appTypeCode is described in the OBJECT
statement

{ botPage | endDoc } footnote
footNoteId(string)

Only used for footnote reference fields.
footNoteId is a string that identifies the
matching footnote body. botPage is used for
footnotes that are to be placed at the bottom of the
page; endDoc for footnotes that are to be placed at
the end of the document.

Sequence of Statements in Words

1-22 Words Technical Reference

Table 1-7 FIELD_BEGIN Comments (cont.)

Element Meaning

date: dateStamp Only used for linked object fields; dateStamp is
the time the linked file was last modified

This is the same format as the time returned by
DATE_LAST_MODIFIED@

docType :docTypeCode Only used for linked or embedded object fields;
docTypeCode is described in the OBJECT
statement

editable If present, the field value can be edited; that is, it is
unprotected

endDoc footnote name(string) Only used for end-of-document footnote reference
field

outDated If present, the field value is reevaluated when the
document is read

The FIELD_BEGIN statement is followed by the field method. See
Chapter 3 for information.

FIELD_END

< end_field > /* abbrev: < E_F > */

FIELD_VALUE

< field_value > /* abbrev: < FV > */

FLOW_BEGIN

< start_flow >

Sequence of Statements in Words

File Format 1-23

FLOW_END

< end_flow >

FOOTNOTE_BEGIN

< start_footnote
footNoteId

>

Table 1-8 FOOTNOTE_BEGIN Comments

Element Meaning

footNoteId A string that identifies the matching footnote
reference field

FOOTNOTE_END

< end_footnote >

GLOSSARY_BEGIN

< start_glossary /* abbrev: < S_G */
name(string)
[live]

>

Table 1-9 GLOSSARY_BEGIN Comments

Element Meaning

live If specified, matching references change
when the glossary’s contents change

name(string) Required; name of glossary

Sequence of Statements in Words

1-24 Words Technical Reference

GLOSSARY_END

< end_glossary > /* abbrev: < E_G > */

GRAPHICS

< graphics
name(string)
[changedFlag]

>
asciiData

The graphics bead is used as a temporary container for the actual
graphics data in a linked graphics file. This information is discarded on
save and recreated when the document is read back in. Thus the
Graphics bead does not usually appear in the Words file.

Table 1-10 GRAPHICS Comments

Element Meaning

asciiData Contents of graphics

name(string) Unique name for this data

HDRFTR_BEGIN

< start_hdrftr
hdrftrname(string)

>

Table 1-11 HDRFTR_BEGIN Comments

Element Meaning

hdrftrname(string) This name matches the name in the hdrFtrReference
statement. The name should be of the format
"_AX_HF_#", where "#" is a number; e.g. "_AX_HF_1".

Sequence of Statements in Words

File Format 1-25

HDRFTR_END

< end_hdrftr>

LINE_BREAK

\n

The line break is represented by a backslash-n in the file.
LINK

*LINK pathname

Table 1-12 LINK Comments

Element Meaning

pathname The name of the external file to which you
are linking

MARKER

<marker
markername(string)

>

Creates a named location in a file. This bead was not written to file
during a Save operation in releases prior to release 4.

OBJECT

< object
name(string)
docType: docTypeCode
appType: appTypeCode
[cvtMacro: macro(string)]
[appMacro: macro(string)]
[allowUnreferenced]

Sequence of Statements in Words

1-26 Words Technical Reference

[changedFlag]
>
asciiData | binaryData /* Contents of object */

Table 1-13 OBJECT Comments

Element Meaning

allowUnreferenced If present, this object will be preserved at save
time even if not referenced in the document. If
absent, this object will not be written to the
output file if it is not referenced within the
document (default behavior).

appMacro: macro(string) The name of the ELF macro to execute when the
object is double-clicked upon (not needed for an
Applixware object). Note this value will be
overridden by a similar specification in the object
field that references this object, if the field has
such a specification.

appType: appTypeCode An integer representing the Applix application
matching the object. For example, if the object is a
graphics object of any type (e.g. GIF, JPEG,
Applixware Graphics), the value will be 2,
representing "Applixware Graphics".

See the appTypeCode section below for more
information.

Note this value will be overridden by a similar
specification in the object field that references this
object, if the field has such a specification.

Sequence of Statements in Words

File Format 1-27

Table 1-13 OBJECT Comments (cont.)

Element Meaning

docMacro: macro(string) The name of the ELF macro to be used when
converting the object into Applixware format (not
needed for an Applixware object). Note this value
will be overridden by a similar specification in the
object field that references this object, if the field
has such a specification.

docType: docTypeCode Is an integer representing the origin of the object.
The same coding system is used by the
RECOGNIZE_FILE@ macro

Some of the common codes are:

0 = ASCII
1 = DCA
35 = HTML
66 = GIF
108 = Excel XLS 4.0
200 = Applix Words
201 = Applix Graphics
203 = Applix Spreadsheets
211 = Applix Data

See recgfil_.am for more codes.

Note this value will be overridden by a similar
specification in the object field that references this
object, if the field has such a specification.

name(string) This required field matches the name in an object
field method

Sequence of Statements in Words

1-28 Words Technical Reference

PAGE_BREAK

< page_break
[odd_page | even_page]

>

Table 1-14 PAGE_BREAK Comments

Element Meaning

odd_page |
even_page

If odd_page is specified, the material
following the page break will begin on the
next odd page. If even_page is specified,
it will begin on the next even page. If
nothing is specified, the material will begin
on the next page, regardless of whether it is
an odd or even page (default behavior).

PARA

< para /* abbrev: < P */
styleName(string)
[borderAttributes]
[paraAttributes]
[tabDefinitions]
[frameAttributes]
[textAttributes]
[changedFlag]

>

Table 1-15 PARA Comments

Element Meaning

changedFlag For change bar operations only, If this
attribute is used, it always occurs just
before the bead’s concluding ">"

Sequence of Statements in Words

File Format 1-29

Table 1-15 PARA Comments (cont.)

Element Meaning

styleName The name of the style controlling the
inherited attributes of this paragraph

PICTURE

< picture
name(string)
[builtIn]
appId: appTypeCode
[proportional]
[clipMode: clipModeCode(int)
[xScale: xscale(float)]
[yScale: yscale(float)]
[xOffset: xoffset(mils)]
[yOffset: yoffset(mils)]
[srcWidth: srcWidth(mils)]
[srcHeight: srcHeight(mils)]
[picSource:" elfStringArray"]
[width: displayWidth(mils)/]
[height: displayHeight(mils)]
[changedFlag]

>

Table 1-16 PICTURE Comments

Element Meaning

builtIn Obsolete as of 4.3.

Sequence of Statements in Words

1-30 Words Technical Reference

Table 1-16 PICTURE Comments (cont.)

Element Meaning

appId: appTypeCode An integer representing the Applix application
matching the inset. For example, if the inset is a
graphics object of any type (e.g. GIF, JPEG,
Applixware Graphics), the value will be 2,
representing "Applixware Graphics".

See the appTypeCode section below for more
information.

Note this value will be overridden by a similar
specification in the inset field that references this
object, if the field has such a specification.

3Note in release 4.3 and before, a clipmode of 0 for an inset not in a frame was ignored
(treated as a 1), since only framed insets were allowed to resize. Some documents from 4.3
and before may have this flag improperly set to 0. When the 4.4 release reads a document
from release 4.3 or earlier, if an unframed inset has a clipmode flag set to 0, it is reset to 1.
This will prevent unwanted resizing of unframed insets from older releases.

Sequence of Statements in Words

File Format 1-31

Table 1-16 PICTURE Comments (cont.)

Element Meaning

clipMode: clipModeCode This controls how the picture is scaled or clipped.
Possible values are:

 0: This is the default if "clipMode" is not
specified. If the picture is in a frame, the picture is
scaled to the size of the frame. If the frame has auto
width or height or both, the corresponding
width/height of the picture is not scaled, i.e., it is
displayed at full size.

In release 4.3 and before, if the picture is not in a
frame, the picture is not scaled, but may be clipped
if it is larger than the margins.

As of release 4.4, the picture will be sized so its
width exactly fits the column or cell it falls within3,
and its height adjusted proportinately, even if the
proportional flag is absent. However, the 4.3
behavior can be preserved (i.e. the picture only
resizes if it is in a frame) by setting the
wpNoInsetScaleToFit profile to 1.

 1: The picture is clipped if it is larger than the
frame (if the picture is within a frame) or the
margins (if the picture is not in a frame).

Sequence of Statements in Words

1-32 Words Technical Reference

Table 1-16 PICTURE Comments (cont.)

Element Meaning

Note in release 4.2, a graphics inset in a cell was not
clipped to the cell margins. As of release 4.3, any
picture inset in a cell is clipped to the cell margins.
As of release 4.4, the release 4.2 behavior can be
recovered (i.e. an inset will not be clipped to the cell
margins) by setting the wpNoClip profile to 1.

The picture is scaled using the "xScale" and "yScale"
attributes of the PICTURE bead, if any.

height: displayHeight (mils) Only used for filters.

height and width define the display size of the
picture, taking into account the source specification
(or offsets and source size) and the scale factor.

height and width are included only to provide
conversion compatibility with foreign formats that
require this information. Words will recalculate
these values when the file is read and the object first
displayed.

name(string) This is a required field. For an embedded object,
name matches the name in an object or graphic
bead containing the data being displayed. For a
linked inset, name represents the (absolute or
relative) filename of the entity.

As of release 4.3, name can be a URL.

proportional If omitted, xScale and yScale can differ

Sequence of Statements in Words

File Format 1-33

Table 1-16 PICTURE Comments (cont.)

Element Meaning

picSource:" elfStringArray" As of release 4.3, this format is used to indicate
what portion of the inset to display. For a Graphics
inset, this might describe a rectangular area within
the object; for a Spreadsheet, a cell range, etc.

This format represents an ELF array which will be
different for each object type. For a Graphics inset,
see gr_inset_source@ in graphic_.am. For a
Spreadsheet inset, see ss_inset_source@ in
spsheet_.am. For a Words inset, see
wp_inset_source@ in wp_.am.

For a Graphics inset only, if no picSource is
specified, and any combination of xOffset,
yOffset, srcWidth , and srcHeight are
specified, these values are used to manufacture a
picSource.

srcHeight: srcHeight(mils) For a graphics inset only. If omitted, the entire
height of the source object is used

xOffset, yOffset, srcWidth , and
srcHeight define the area of the source material
used by the picture.

As of 4.3, all insets will write their source
specification data in
picSource:" elfStringArray" format.

srcWidth: srcWidth(mils) For a graphics inset only. If omitted, the entire
width of the source object is used. See srcHeight
for more information.

width: displayWidth (mils) Only used for filters; see height for more
information

Sequence of Statements in Words

1-34 Words Technical Reference

Table 1-16 PICTURE Comments (cont.)

Element Meaning

xOffset: xoffset(mils) For a graphics inset only. See srcHeight for more
information

xScale: xscale(float) If omitted, a default value of 1 is used

xScale is the horizontal scale factor by which the
source material will be scaled

yOffset: yoffset(mils) For a graphics inset only. See srcHeight for more
information

yScale: yscale(float) If omitted, a default value of 1 is used

yScale is the vertical scale factor by which the
source material will be scaled

ROW_START

< row_start /* abbrev: < RS */
[justifyLeft | justifyRight | justifyCenter]
[leftIndent: indent(mils)]
[topRowMargin: margin(mils)]
[bottomRowMargin: margin(mils)]
[height: height(mils) | minHeight: height(mils) |

maxHeight: height(mils)]
[heading]

>

Table 1-17 ROW_START Comments

Element Meaning

bottomRowMargin: margin(mils) Amount of whitespace below the row (before
the next row or paragraph). Assumed to be
zero if omitted.

Sequence of Statements in Words

File Format 1-35

Table 1-17 ROW_START Comments (cont.)

Element Meaning

heading If present and this is the first row in the table,
this row will be repeated as the first row on
subsequent pages which contain rows of the
same table

This is a Release 4 feature

height: height(mils) |
minHeight: height(mils) |
maxHeight: height(mils)

If omitted, row is as high as the tallest cell;
otherwise, the heights are as follows:

height exactly this tall
minHeight at least this tall
maxHeight at most this tall

justifyLeft | justifyRight |
justifyCenter

The default is left justified

leftIndent If omitted, the row begins at the left column or
margin

topRowMargin: margin(mils) Amount of whitespace above the row (after the
preceding row or paragraph). Assumed to be
zero if omitted.

SECTION

< section
[next_column | next_page | even_page | odd_page]
[landscape]
pageWidth: width(mils)
pageHeight: height(mils)
[paperSize: paperCode(int)]
[leftMargin: margin(mils)]
[rightMargin: margin(mils)]
[topMargin: margin(mils)]
[bottomMargin: margin(mils)]
[bindingMargin: margin(mils)]
[columns: columns(1-19)]

Sequence of Statements in Words

1-36 Words Technical Reference

[gutterWidth: gutter(mils)]
[oddHeader: hdrFtrReference]
[evenHeader: hdrFtrReference]
[firstHeader: hdrFtrReference]
[lastHeader: hdrFtrReference]
[oddFooter: hdrFtrReference]
[evenFooter: hdrFtrReference]
[firstFooter: hdrFtrReference]
[lastFooter: hdrFtrReference]
[sectNumFmt: numstyle]
[sectNumCtl: sectnumctl]
[sectNumVal: sectnum(int)]
[sectPageSep: separator(string)]
[pageNumFmt: numstyle]
[pageNumCtl: pagenumctl]
[pageNumVal: pagenum(int)]
[printSourceTray: sourceTray(int)]
[printDestTray: destTray(int)]
[duplex: duplex(int)]

>

The section and page numbering properties control the appearance of
the page number fields that fall into the section (that is, before this
section bead but after any preceding section beads). Page numbering
consists of a page number, optionally preceded by a section number.
Within the section, the page numbers increment, but the section number
does not.

Table 1-18 SECTION Comments

Element Meaning

bindingMargin: margin(mils) If the document is in "facing pages" mode, this
margin is added to the inner margin of each page.
If the document is not in "facing pages" mode, this
margin is added to the left margin of each page.

columns: columns(1-19) Single column if omitted

Sequence of Statements in Words

File Format 1-37

Table 1-18 SECTION Comments (cont.)

Element Meaning

duplex: duplex(int) Indication of whether the physical printing should
occur on one or both sides of the paper. Note this
is not related to the "facing pages" mode. The
codes are:

0 = simplex (single-sided) print (the default)
1 = duplex (double-sided), long edge
2 = duplex (double-sided), short edge

On a sheet of paper printed in duplex-long, the
paper must be rotated about the long (vertical) axis
in order to view the back right side up. In duplex-
short, the paper must be rotated about the short
(horizontal) axis to view the back right side up.

This item did not exist in releases prior to release
4.2.

gutterWidth: gutter(mils) The space left between columns, if the section has
more than one column.

landscape If omitted, the pages in the section are printed in
normal (portrait) mode. If present, pages are
printed in landscape mode. In landscape mode, all
text and graphics is rotated 90 degrees with
respect to the physical paper.

Sequence of Statements in Words

1-38 Words Technical Reference

Table 1-18 SECTION Comments (cont.)

Element Meaning

leftMargin: margin(mils)
rightMargin: margin(mils)
topMargin: margin(mils)
bottomMargin: margin(mils)

The left, right, top, and bottom margins; that is, the
whitespace between the main flow rectangle and
the edge of the paper. Note the header and footer
ignore the top and bottom margins.

The margins are place relative to the direction of
the text. In a portrait (normal) section of US Letter
size, the top and bottom margins run along the
short (8.5 inch) sides of the paper. In a landscape
section of the same page size, the top and bottom
margins run along the long (11 inch) sides of the
paper.

If the document is in "facing pages" mode,
leftMargin represents the inner margin (i.e. the
left margin of an odd page and the right margin of
an even page) and rightMargin represents the
outer margin.

next_column | next_page |
even_page | odd_page |
Continuous

If omitted, the default is Continuous

oddHeader: hdrFtrReference...
lastFooter: hdrFtrReference

The status of the headers and footers on the first,
odd, even, and last pages of the section. See
hdrFtrReference for more information.

pageWidth: width(mils),
pageHeight: height(mils)

Actual paper (page) size for pages that fall into this
section. Will override paperSize (see below) if a
mismatch occurs.

Note that these values are not swapped when the
document moves between portrait and landscape
mode

Sequence of Statements in Words

File Format 1-39

Table 1-18 SECTION Comments (cont.)

Element Meaning

pageNumCtl: pagenumctl If omitted, increment last page in previous section

pagenumctl is a Boolean controlling the value of
the first page in the section. The code is as follows:

0 = increment last page in previous section
1 = use pagenum value

pageNumFmt: numstyle If omitted, Arabic numbering is used

pageNumVal :pagenum(int) If this is used, the page number to a specific value

pagenum is an integer used as the value of the first
page number in the section only when
pagenumctl is set to 1

Sequence of Statements in Words

1-40 Words Technical Reference

Table 1-18 SECTION Comments (cont.)

Element Meaning

paperSize: paperCode(int) Code indicating desired paper size, as displayed in
the Page Setup dialog box. Must be kept in synch
with pageWidth and pageHeight (see above) as
they control the actual values used for the page
size. The code values are as follows:

1 = US Letter
2 = US Tabloid
3 = US Ledger
4 = US Legal
5 = US Statement
6 = US Executive
7 = US Envelope 10
8 = US Envelope 9
9 = US Envelope 6
10 = A3
11 = A4
12 = A5
13 = B4
14 = B5
15 = Envelope C4
16 = Envelope C5
17 = Envelope DIN

printDestTray: destTray(int) Printer tray number into which printed paper is
put during a print. Zero represents the default
destination tray.

This item did not exist in releases prior to release
4.2.

Sequence of Statements in Words

File Format 1-41

Table 1-18 SECTION Comments (cont.)

Element Meaning

printSourceTray:
sourceTray(int)

Printer tray number from which paper is drawn
during a print. Zero represents the default source
tray.

This item did not exist in releases prior to release
4.2.

sectNumCtl :sectnumctl If omitted, section numbering is the same as the
previous section

sectnumctl is an integer indicating the method
of determining the value of the section numbering.
The code numbers, corresponding to the
WP#SECT#NUM# defines in wp_.am, are as
follows:

0 = same value as previous section
1 = increment previous section’s value
2 = use sectnum value.

Sequence of Statements in Words

1-42 Words Technical Reference

Table 1-18 SECTION Comments (cont.)

Element Meaning

sectNumFmt :numstyle If omitted, no section numbering

numstyle is an integer representing the section or
page numbering format

The code numbers, corresponding to the
WP#NUMBERING# defines in wp_.am, are as
follows:

-1 = no numbering
0 = Arabic
1 = uppercase letters
2 = lowercase letters
3 = uppercase Roman
4 = lowercase Roman

Numbers larger than 1000 indicate document
variables that define a macro for a custom series
format (1000+N corresponds to document variable
UserSeriesN)

Refer to the Utilities➝ Edit Numbered Series ➝
Custom Series dialog box for more information

sectNumVal :sectnum(int) If used, the section number is forced to this value

sectnum is the section numbering value when
sectnumctl is set to 2

sectPageSep :separator(string) If omitted, the page separator is a hyphen

separator is the string separating the section and
page numbering; it is only displayed if both
section and page numbering are displayed (that is,
both numstyles are not -1)

Sequence of Statements in Words

File Format 1-43

SERIES

< series
name(string)
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9
[leader: leader(string)]
[trailer: trailer(string)]
[leaders0: leader (string)]
[leaders1: leader (string)]
[leaders2: leader (string)]
[leaders3: leader (string)]
[leaders4: leader (string)]
[leaders5: leader (string)]
[leaders6: leader (string)]
[leaders7: leader (string)]
[leaders8: leader (string)]
[leaders9: leader (string)]
[trailers0: trailer (string)]
[trailers1: trailer (string)]
[trailers2: trailer (string)]
[trailers3: trailer (string)]
[trailers4: trailer (string)]
[trailers5: trailer (string)]
[trailers6: trailer (string)]
[trailers7: trailer (string)]
[trailers8: trailer (string)]
[trailers9: trailer (string)]
[multiLevel] /* Display single level

only if omitted */
[sep1: separator (string)]
[sep2: separator (string)]
[sep3: separator (string)]
[sep4: separator (string)]
[sep5: separator (string)]
[sep6: separator (string)]
[sep7: separator (string)]
[sep8: separator (string)]
[sep9: separator (string)]
[from1: level to show from(0-1)]
[from2: level to show from(0-2)]
[from3: level to show from(0-3)]
[from4: level to show from(0-4)]
[from5: level to show from(0-5)]
[from6: level to show from(0-6)]
[from7: level to show from(0-7)]
[from8: level to show from(0-8)]

Sequence of Statements in Words

1-44 Words Technical Reference

[from9: level to show from(0-9)]
>

Table 1-19 SERIES Comments

Element Meaning

name(string) Name of the series.

n0...n9 (int) Integers representing the format of the levels of
the series. The level of an instance of the series
is, by default, determined by the level of the
paragraph the series field falls within.

The code numbers, corresponding to the
WP#NUMBERING# defines in wp_.am, are as
follows:

-1 = no numbering
0 = Arabic
1 = uppercase letters
2 = lowercase letters
3 = uppercase Roman
4 = lowercase Roman

Numbers larger than 1000 indicate document
variables which define a macro for a custom
series format (1000+N corresponds to document
variable UserSeriesN); refer to the Utilities ➝
Edit Numbered Series ➝ Custom Series dialog
box for more information

leader: leader (string) If present, the string to be displayed before the
series number(s) or letter(s).

trailer: trailer (string) If present, the string to be displayed after the
series number(s) or letter(s).

Sequence of Statements in Words

File Format 1-45

Table 1-19 SERIES Comments (cont.)

Element Meaning

leaders0...leaders9: leader
(string)

Strings representing individual leaders for
particular levels of the series. These can be used
as an alternative to, or in addition to, the global
leader. If a series at a particular level has a level-
dependent leader as well as a global leader, the
global leader precedes the level-dependent
leader.

This feature was implemented in release 4.0

trailers0...trailers9: trailer
(string)

Strings representing individual trailers for
particular levels of the series. These can be used
as an alternative to, or in addition to, the global
trailer. If a series at a particular level has a level-
dependent trailer as well as a global trailer, the
global trailer follows the level-dependent trailer.

This feature was implemented in release 4.0

multilevel If omitted, only display single level

from1...from9: level to show
from (int)

Numbers representing, for a particular level,
which higher levels to display. For example, if
the formats for levels 0, 1, and 2 are "A", "a", and
"i" respectively, the following would be
displayed at level 2:

Flag displayed
from2:2 i
from2:1 a.i
from2:0 A.a.i

These flags are only serviced when the
multilevel flag is set.

Sequence of Statements in Words

1-46 Words Technical Reference

Table 1-19 SERIES Comments (cont.)

Element Meaning

sep1...sep9: separator
(string)

Strings representing individual separators
between particular levels of the series. These
separators are only displayed when the
multilevel flag is set, and the from flag for
the given level specifies the display of higher
levels. The separator for a given level precedes
the string for that level, if the next-higher level
is also being displayed.

STYLE

< style
name(string)
parent name(string)
[nextStyle name(string)]
[borderAttributes]
[frameAttributes]
[glossary name(string)] /* Style has no leading

glossary if omitted*/
[paraAttributes]
[tabDefinitions]
[textAttributes]

>

Table 1-20 STYLE Comments

Element Meaning

glossary name(string) If present, name of glossary to be inserted before each
instance of a paragraph that uses this style (e.g. a
glossary containing a bullet, or a numbered series
field).

Sequence of Statements in Words

File Format 1-47

Table 1-20 STYLE Comments (cont.)

Element Meaning

name(string) Name of current style. All styles in a document must
have unique names. The first style in a document
should be the top-level style, from which all other
styles should be directly or indirectly descended.

nextStyle name(string) Name of style to be used when user puts cursor at the
end of a paragraph of current style and hits return,
thus creating a new, empty paragraph. If omitted, the
current style will be used.

parent name(string) This is required except for the top-level style where it
is omitted

The top-level style does not have itself for a parent

STYLES_BEGIN

< start_styles >

STYLES_END

< end_styles >
TEXT

< text /* abbrev: < T */
text(string)
[textAttributes]
[changedFlag]

>

Supported Properties

1-48 Words Technical Reference

Table 1-21 TEXT Comments

Element Meaning

text(string) This cannot be empty; if it is, the bead is
discarded

changedFlag (Change bar operations only) If present, it
always occurs just before the ">"

VARS_BEGIN

< start_vars >

VARS_END

< end_vars >

Supported Properties

This section describes the properties of the supported statements. The
properties are listed in alphabetical order. Generally, properties are
optional and have a default value when they are omitted. The formatting
conventions from the "Supported Statements" section are also used here.

appTypeCode

appTypeCode is an integer representing an Applix application type. The
same coding system is used by the
AX_APP_TYPE_FROM_DOC_TYPE@ macro; some of the common
codes are:

1= Words
2= Graphics

Supported Properties

File Format 1-49

3= Spreadsheets
4= Macros
5= Audio
6= Bitmap
10= Data
12 = Equations
14 = HTML Author

See app_ids_.am for more codes.

asciiData
<start_data ascii >

asciiData
<end_data>

asciiData is printable ASCII characters. Newlines are ignored. To
make a newline in the data, use \n. The maximum line length is 1000
characters. The following are the other escape sequences:

\t tab
\< left angle bracket
\> right angle bracket
\\ backslash
* asterisk

See the section on Wide and Multi-byte Characters earlier in this chapter
for a discussion of the treatment of other 8-bit and special characters.

In Release 4.0 and beyond, ASCII data that extends across multiple lines
should be in continuation line format, with a backslash at the end of each
line (except for the last line), and a space at the beginning of each line
(except the first line). For example:

<start_data ascii >
Here is the first line.\nHere is the second line; no\
 te the backslash and leading space. Here is the las\
 t line which has no final backslash.
<end_data>

Supported Properties

1-50 Words Technical Reference

Prior to Release 4.0, continuation line format was not used for ASCII
data. For example:

<start_data ascii >
Here is the first line in 3.11 format.\nHere is th
e second line; note there are no trailing backslas
hes or leading spaces in this version.
<end_data>

It is important that the format of the ASCII data be appropriate for the
version number in the document header (use continuation lines when
the version number is 400 or larger).

binaryData
<start_data binary >

hexData
<end_data>

hexData is any binary data where bytes are represented by two
hexadecimal digits. New lines are ignored. The maximum line length is
1000 characters.

borderAttributes
See the sections CELL_END, PARA, and STYLE.

bottomBorder :thickness(mils)
:double(bool):color(string)
/* or bB:*/

dropShadow :shadingStyle
horizontal :thickness(mils) :double(bool):color(string)

/* or hB:*/
horizontalMargin :margin(mils)
leftBorder :thickness(mils): double(bool): color(string)

/* or lB :*/
rightBorder :thickness(mils) :double(bool):color(string)

/* or rB :*/

Supported Properties

File Format 1-51

shading :shadingStyle:foregroundcolor(string):backgroun-
dcolor(string)

topBorder :thickness(mils) :double(bool):color(string)
/* or tB :*/

verticalBorder :thickness(mils)
:double(bool):color(string)
/* or vB:*/

verticalMargin :margin(mils)

shadingStyle is an integer representing the desired shading pattern,
as defined by the WP#SHADING# defines in wp_.am.
WP#SHADING#NONE, or integer value 18, is the default.

changedFlag
See the sections PARA and TEXT.

Changes :added | deleted | changed

This property controls the type of change bar to be displayed adjacent to
the line containing the statement. If omitted, no change bar is displayed.

docTypeCode
See OBJECT for information on docTypeCodes.

elfData
See DOC_VARIABLE and elfDataArray.

value(int) | value(float) | value(string) | binaryData |
elfDataArray

elfDataArray
See elfData in the previous section.

<
elfData...

>

Supported Properties

1-52 Words Technical Reference

elfString
See PICTURE and elfStringArray.

value(int) | value(float) | value(string) | ~ | elfDataArray

Table 1-22 elfString Comments

Element Meaning

~ The tilde character ’~’ represents a NULL
element in an array.

elfStringArray
See elfString in the previous section.

<
elfString...

>

frameAttributes
See the PARA and STYLE sections.

bottomFrameMargin: margin(mils)
frameMargin: margin(mils) */
height :height(mils) | minHeight :height(mils) | maxHeight:

height(mils)
jumpOver | background /* Frame type; omit for

default (flow around) */
leftFrameMargin: margin(mils)
noFrame /* If present, para has no

frame */
rightFrameMargin: margin(mils)
topFrameMargin: margin(mils)
width :framewidth(mils)
xpos :position(mils)
xposMarginRelative | xposColumnRelative

Supported Properties

File Format 1-53

xposTypeCenter | xposTypeRight | xposTypeOutside |
xposTypeInside

ypos :position(mils)
yposMarginRelative | yposParaRelative
yposTypeCenter | yposTypeBottom

Table 1-23 frameAttributes Comments

Element Meaning

frameMargin: margin(mils) If present, it is the value to which all four
margins are set

height: height(mils) |
minHeight :height(mils)

If omitted, the height will be autosized

jumpOver | background Frame type; omit for the default, which is flow
around

noFrame If present, the paragraph does not have a
frame

width :framewidth(mils) If omitted, the width will be autosized

xposMarginRelative |
xposColumnRelative

Relative to (horizontally); omit for default,
which is page

xposTypeCenter | xposTypeRight |
xposTypeOutside | xposTypeInside

Horizontal alignment; omit for the default,
which is left align

yposMarginRelative |
yposParaRelative

If omitted, the height is autosized

yposTypeCenter | yposTypeBottom Vertical alignment; omit for default, which is
top align

hdrFtrReference
inherit | none | Normal :hdrftrName(string) |

UseGlossary: glossaryName(string)

Supported Properties

1-54 Words Technical Reference

Table 1-24 hdrFtrReference Comments

Element Meaning

glossaryName Match the name in a GLOSSARY_BEGIN
statement

hdrftrName Match the name in a HDRFTR_BEGIN
statement. The name should be of the format
"_AX_HF_#", where # is a number; For
example: "_AX_HF_1"

inherit Inherit from the previous section

none Do not use a header or footer of this type in
this section

paraAttributes
Note that if properties are missing, then the values are inherited.

firstIndent :indent(mils)
hyphMinFrag :frag(# of chars)
hyphZone :zone(mils)
indentToLevel | no-indentToLevel
justifyLeft | justifyRight | justifyCenter | justifyFull
leftIndent :indent(mils)
level :level(0-10)
lineSpacing: spacing (mils)
lineSpacingMode: mode
lineSpacingCountHeight: value (number, mils)
lineSpacingSep: value (mils)
no-keepWith | keepWith
postParaSpacing :spacing(mils)
preParaSpacing :spacing(mils)
rightIndent :indent(mils)
spellcheck | no-spellcheck

Supported Properties

File Format 1-55

Table 1-25 paraAttributes Comments

Element Meaning

indentToLevel If indenting, add an extra indent of
level * indent-per-level-amount ;
See DOCUMENT_BEGIN for more
information

level Paragraph indent level. Values range from
0 to 9.

lineSpacing Spacing is a number specifying leading, in
mils. Retained for compatibility with
versions earlier than 4.4.2.
Additional space allocated to lines for
single-line spacing, to emulate multiple-line
spacing.

lineSpacingMode Retained for backward compatibility with
Version 4.4.1 and earlier.

Mode is a number specifying line spacing
mode.
0: Auto (line height set by contents)
1: Exact
2: At-least.

lineSpacingMode2 Retained for backward compatibility with
Version 4.4.1 and earlier.

Mode is a number specifying line spacing
mode.
4: At-least
5: Exact
6: Multiple-line

Supported Properties

1-56 Words Technical Reference

Table 1-25 paraAttributes Comments (cont.)

Element Meaning

lineSpacing-
CountHeight

"Multiple-line" spacing: Value is number of
lines, in 1000ths of lines (1000 = single).
"Exact" mode: Value is line height in mils.
"At Least" mode: Value is minimum line
height in mils.

lineSpacingSep "Multiple-line" mode only. Value is an
amount in mils added to space between
bottom and top of consecutive lines.

tabDefinitions
See PARA, STYLE

localTabs
[tabStop]...

Table 1-26 tabDefinitions Comments

Element Meaning

localTabs If omitted, all tabs are inherited; otherwise, no
tabs are inherited

tabStop Set of tabs if tabs are not inherited

tabStop
See tabDefinitions

A tabstop definition consists of one of the following:

centerTab :position(mils)) [:leaders(string)] /* abbrev
cT */

/* abbrev dT */

Supported Properties

File Format 1-57

decimalTab :position:alignChar(string) [:leaders(string)
]

leftTab :position(mils) [:leaders(string)]
/* abbrev: lT */

rightTab :position(mils) [:leaders(string)]
/* abbrev rT */

Table 1-27 tabStop Comments

Element Meaning

alignChar A string containing a single character; the
matching character in the text following a tab
will align at this tab stop

An alignChar is required in a decimal tab

leaders The string that is replicated along the length
of the tab up to the tabbed text; if omitted, the
tab has no leader

textAttributes
See PARA, STYLE

Note that if properties are missing, values are inherited.

bold | no-bold
color :name(string)
face: name(string)
hyphenate | no-hyphenate
italic | no-italic
no-underline | underline | double-underline | word-

underline |double-word-underline | underline-no-tabs
| double-underline-no-tabs

position :offset (points)
size: size(points)
strikethru | no-strikethru

Equation File Format

1-58 Words Technical Reference

Table 1-28 textAttributes Comments

Element Meaning

offset A positive number is a superscript; a negative
number is a subscript

Equation File Format

Equations uses two different formats. One format is used when the
equation is contained as an embedded object; the second is used when
the object is localized.

The following is the sequence of statements used when Equation
information is stored as an embedded object.

document = DOCUMENT_BEGIN
[EQUATION-SETTINGS]
equation
DOCUMENT_END

equation = EQUATION_BEGIN
[TEMPLATE]
EQUATION_END

subequations = [equation] ...

The following format is used when an Equation object is localized:

equationBead =
EQUATION_BEAD_BEGIN
[EQUATION-SETTINGS]
equation
EQUATION_BEAD_END

4 Was *START in releases prior to Release 4.

Equation Statements

File Format 1-59

Equation Statements

DOCUMENT_BEGIN

*BEGIN4 EQUATIONS VERSION=vnum ENCODING=encoding
<APPLIX EQUATIONS>

DOCUMENT_END

<end_document>
*END EQUATIONS

EQUATION_BEAD_END

>

EQUATION_BEAD_START

<equation

EQUATION_BEGIN

<eqn_begin
[pileAlign]
[matrixRowAlign]
[matrixColAlign]

 >

EQUATION_END

<eqn_end>

Equation Statements

1-60 Words Technical Reference

EQUATION_SETTINGS

fullSize: fontSize(points)
subSize: fontSize(points)
subSubSize: fontSize(points)
symbolSize: fontSize(points)
subSymbolSize: fontSize(points)
lineSpace: percent | amount(points)
matrixRowSpace: percent | amount(points)
matrixColSpace: percent | amount(points)
subscriptDepth: percent | amount(points)
superscriptHeight: percent | amount(points)
limitHeight: percent | amount(points)

Only amounts that differ from their default values are stored in a file. A
negative spacing attribute value represents a relative value in percent of
the fontHeight of the font with a size=fullSize .

The following are the default value for each of these equation settings:

Table 1-29 Equation Setting Defaults

Element Default Value

fullSize 12 points

subSize 8 points

subSubSize 6 points

symbolSize 24 points

subSymbolSize 18 points

lineSpace -150

matrixRowSpace -150

matrixColSpace -100

subscriptDepth -40

Equation Properties

File Format 1-61

Table 1-29 Equation Setting Defaults (cont.)

Element Default Value

superscriptHeight -20

limitHeight -20

TEMPLATE

<tmpl
template-type
[xnudge: amount(mils)]
[ynudge: amount(mils)]

>
subequations...

The number of subequations depends on the type of template.

Equation Properties

matrixColAlign

leftAlign | centerAlign | rightAlign | equalsAlign |
markerAlign | decimalAlign

Only a matrixColAlign attribute that differs from the default is saved
in a file. The default value is leftAlign .

matrixRowAlign

topAlign | centerAlign | bottomAlgin | baselineAlign

Equation Properties

1-62 Words Technical Reference

Only a matrixRowAlign attribute that differs from the default is saved
in a file. The default value is topAlign .

pileAlign

leftAlign | centerAlign | rightAlign | equalsAlign |
markerAlign | decimalAlign

Only a pileAlign attribute that differs from the default is saved in a
file. The default value is leftAlign .

symbol

symbol { string | char: asciiCode(num)
| space: amount(mils) | alignMarker } |

relSymbol { string | char: asciiCode(num) }
|
greekSymbol { string | char: asciiCode(num) }

A symbol template is a simple template. That is, it is a template whose
contents do not contain any subequations. All adjacent symbol templates
with similar properties are normally combined to form string.

Automatic mathematical function recognition is performed upon
symbols.

To qualify for a function name, all the letters in the function should exist
as symbol templates with no attribute exceptions. In addition, they must
all be adjacent.

Non-printable characters are stored with a char:asciiCode
description.

AlignMarker and spaces (which are also simple templates) are
treated as symbol templates.

Equation Properties

File Format 1-63

greekSymbol and relSymbol are derived from symbol templates;
however, their default font is Symbol.

symbolAttributes

no-bold | bold
no-italic | italic
face: fontName(name)
size: fontSize(pts)

Only attributes which differ from their default values are stored in a file.
The default values for these properties are:

Table 1-30 symbolAttribute Defaults

Element Default Value

no-bold | bold no-bold

no-italic | italic italic

face: fontName(name) Times

size: fontSize(pts) fullSize

templateType

symbol [symbol-attributes] |
paren | ltparen | rtparen |
brace | ltbrace | rtbrace |
bracket | ltbracket | rtbracket |
vert | ltvert | rtvert |
dblvert | ltdblvert | rtdblvert |
floor | ltfloor | rtfloor |
ceil | ltceil | rtceil|
ltltbracket | rtrtbracket | oppBracket |
parenBracket | bracketParen |
underbar | dblunderbar |

Equation Properties

1-64 Words Technical Reference

overbar | dbloverbar |
over | divide | slash | by | vertslash |
sqrt | nroot |
sub | sup | subsup | ltsub | ltsup | ltsubsup |
script | scriptup | scriptdn| scriptupdn |
sum | sumup | sumdn | sumupdn | sumsup | sumsub |

sumsubsup |
prod | produp | proddn | produpdn | prodsup | prodsub |

prodsubsup |
cup | cupup | cupdn | cupupdn | cupsup | cupsub |
cupsubsup |
cap | capup | capdn | capupdn | capsup | capsub |
capsubsup |
int | intup | intdn | intupdn | intsup | intsub |
intsubsup |
tint | tintup | tintdn | tintupdn | tintsup | tintsub |
tintsubsup |
thint | thintup | thintdn | thintupdn | thintsup |
thintsub |

thintsubsup |
oint | ointup | ointdn | ointupdn | ointsup | ointsub |
ointsubsup |
ltarrowup | rtarrowup | ltrtarrowup |
ltarrowdn | rtarrowdn | ltrtarrowdn |
matrix matrixRows:number MatrixCols: number

[matrixRowAlign: topAlign | centerAlign |
bottomAlign | baselineAlign]

[matrixColAlign: leftAlign | centerAlign |
rightAlign | equalsAlign | markerAlign | decimalAlign
]

[equalRowHeights] [equalColWidths] |
eqn_break

Equation Properties

File Format 1-65

More Information on Templates

The following table describes various template types and the number of
subequations they contain.

Table 1-31 Template Descriptions

Types # Description

symbol 0 symbol, relSymbol, greekSymbol,
space, alignMarker are members of this
template, which are simple templates

eqn_break 1 Piles of equations are built with
eqn_break template as the separator
between equations

fences 1 paren, ltparen, rtparen, brace, ltbrace,
rtbrace, bracket, ltbracket, rtbracket,
vert, ltvert, rtvert, dblvert, ltdblvert,
rtdblvert, underbar, dblunderbar,
overbar, dbloverbar, floor, ltfloor, rtfloor,
ceil, ltceil, rtceil, ltltbracket, rtrtbracket,
and oppBracket are members of the
fences template

The size of the subequation is fullsize

fraction 2 over, divide, slash, by and vertslash are
members of the fraction template

The order of equations stored in files is:

[numerator][denominator]
The size of both subequations is fullSize

Equation Properties

1-66 Words Technical Reference

Table 1-31 Template Descriptions (cont.)

Types # Description

sqrt * sqrt(1), nroot(2) are members of the sqrt
template

The number in parentheses indicates
the number of subequations these
templates contain.

The order of equations stored in files is:
[body][nroot]

Size of ‘body’ equation is fullSize

The size of ‘nroot’ equation is subSize

script * script(1), scriptup(2), scriptdn(2) and
scriptupdn(3) are members of the script
templates.
The number in parenthesis indicates
the number of subequations these
templates contain

The order of equations stored in files is
:

[body][up limit][down limit]

The size of ‘body’ equation is fullSize

The size of both the limit equations is
subSize

Equation Properties

File Format 1-67

Table 1-31 Template Descriptions (cont.)

Types # Description

summation * sum(1), sumup(2), sumdn(2),
sumupdn(3), sumsup(2), sumsub(2),
sumsubsup(3)
prod(1), produp(2), proddn(2),
produpdn(3), prodsup(2), prodsub(2),
prodsubsup(3)
cup(1), cupup(2), cupdn(2), cupupdn(3),
cupsup(2), cupsub(2), cupsubsup(3)
cap(1), capup(2), capdn(2), capupdn(3),
capsup(2), capsub(2), capsubsup(3)
int(1), intup(2), intdn(2), intupdn(3),
intsup(2), intsub(2), intsubsup(3)
tint(1), tintup(2), tintdn(2), tintupdn(3),
tintsup(2), tintsub(2), tintsubsup(3)
thint(1), thintup(2), thintdn(2),
thintupdn(3), thintsup(2), thintsub(2),
thintsubsup(3)
oint(1), ointup(2), ointdn(2), ointupdn(3),
ointsup(2), ointsub(2), ointsubsup(3)
are the members of the summation
template

The order of equations stored is:
[body][up/sup limit][down/sub limit]

The size of ‘body’ equation is fullSize
and size of both the limit equations is
subSize

Equation Properties

1-68 Words Technical Reference

Table 1-31 Template Descriptions (cont.)

Types # Description

subscript/
superscript

* sub(1), sup(1), subsup(2), ltsub(1),
ltsup(1) , and ltsubsup(2) are members
of the subscript/superscript template

The order of equations stored is:
[superscript][subscript]

The size of both the script equations is
subSize

label-arrows 1 ltarrowup, rtarrowup, ltrtarrowup,
ltarrowdn, rtarrowdn, ltrtarrowdn are
members of the label-arrows template

Size of the subequation is subSize

matrix * Total number of subequations inside a
matrix of m rows and n cols is m x n

The order of equations stored in files is
row major ; that is, elements in the top
row are stored first from left-column to
right-column and then the second row
and then the third row and so on

All subequations are created with
fullSize

* An asterisk in the second column indicates the number of
subequations is variable and is described in ’description’
column.

2-1

2 Technical Terms

This chapter describes the technical terms for Words
document elements, giving tips for usage and sample
macros.

Technical Terms

2-2 Words Technical Reference

Technical Terms

The terms are described in the following sections in alphabetical order.
The terms are:

Bead

Bead Number

Cell

Column, Table

Current Selection

Cursor

Embedded Object

Evaluation

Field

Field Method

Field Value

Flow

Footnote

Frame

Glossary Definition
and Glossary Field

Header and Footer

Inherited Attributes

Inset

Local Attributes

Linked Object

Localize

Location

Marker Bead

Main Flow

Multi-Cell Selection

Object

Object Bead

Offset

Paragraph and Paragraph Bead

Paragraph Marker

Range

Row

Section

Selection

Series Definition & Series Field

Simple Selection

Style

Table

Tag

Text Bead

Undo and Redo

Technical Terms

Technical Terms 2-3

Bead

The bead is the basic unit of a information within a Words document
and represents the different kinds of information and attributes . For
example, a paragraph that contains simple text is stored as a sequence
of two beads:

1. A text bead containing the text of the paragraph

2. A paragraph bead naming the paragraph’s style

A Words document can be conceived as being a linear sequence of
beads. All the material that makes up a document is contained within
beads.

The .aw file generated by Words represents a sequence of tokens that
is converted into an equivalent bead sequence when the file is opened.

The best way to understand beads is as follows:

• Invoke the Bead Information dialog box.

It is listed on the Help pulldown within the menubar editor as
follows: Help ➝ Document Information ➝ Bead Information;
however, it is not displayed in the default menubar.

Technical Terms

2-4 Words Technical Reference

• Select various parts of the document

• Examine the bead information displayed in the dialog box

This dialog box can also be useful when debugging some ELF macros.
The ELF programmer must be very careful when dealing directly with
beads as deleting or inserting the wrong type of bead in the wrong
place can cause Words to exit precipitously.

Fortunately, most of the macros that you’ll write will use the higher-
level Words macros. These macros allow you to bypass bead
manipulation macros. They will also detect and prevent most of the
problems that can occur when you directly manipulate beads.

Technical Terms

Technical Terms 2-5

Related Macros:

WP_BEAD_INFO_DLG@
WP_COPY_BEADS@
WP_DELETE_BEAD@
WP_DELETE_BEADS@
WP_DELETE_BEADS_IN_RANGE@
WP_GET_BEAD@
WP_GET_BEADS@
WP_GET_BEADS_IN_RANGE@
WP_INSERT_BEAD@
WP_INSERT_BEADS@
WP_MOVE_BEADS@
WP_REPLACE_BEAD@
WP_SWAP_BEADS@
WP_SPLIT_BEAD@

Bead Number

The sequence of beads that makes up a Words document is numbered
starting at one and continuing monotonically until the last bead in the
document. There are no gaps in this sequence.

Many ELF macros access beads by their numbers.

As a document is edited, beads are added or deleted; the number
associated with a bead will change as numbering gaps are eliminated.
This means that your macros must use tags or markers to keep track of
a bead if an operation can shift bead numbers.

Related definitions:

Beads; Marker Beads; Tags

Technical Terms

2-6 Words Technical Reference

Cell

A cell is a rectangular area that can contain document information. A
series of adjacent cells make up a row; a series of adjacent rows makes
up a table.

The beads that make up a cell are:

1. Any document material (see below)

2. A Paragraph bead

3. A Cell End bead

A cell has the following properties:

• Width

• Left, right, top, and bottom margins that separate the contents of
the cell from its bounds

• Border and shading information

• Form properties (beginning at Release 4)

• Whether or not this is the last cell in the row

A cell can contain any document material except:

• Other cells

• Framed paragraphs

• Section, column, and page breaks

Macros that deal with column and cell numbers use a zero-based
system; that is, the first cell in a row is cell 0, the second cell is cell 1,
and so on.

Technical Terms

Technical Terms 2-7

Related User Interface:

Table ➝ Cell Attributes
Table ➝ Insert Cells, Table ➝ Delete Cells
Table ➝ Make Row Fit
Table ➝ Merge ➝ Cells Into First [Wide] Cell
Table ➝ Select ➝ Cell
Table ➝ Split ➝ Cell

Related ELF formats:

format wp_cell_attrs@
see wp_.am in install_dir/axdata/elf

Related Macros:

WP_CELL_IS_SELECTED@
WP_COPY_CELL@
WP_DELETE_CELL@
WP_DELETE_CELLS@
WP_FIND_BEAD_OF_CELL@
WP_FIND_NTH_CELL@
WP_GET_CELL@
WP_GET_RANGE_OF_CELL@
WP_GET_RANGE_OF_CELLS@
WP_GET_SELECTED_CELL_ATTRS@
WP_GOTO_FIRST_CELL@
WP_ILLEGAL_FOR_TABLE@
WP_INSERT_CELLS@
WP_IS_BEAD_IN_CELL@
WP_NUM_CELLS_IN_ROW@
WP_SELECT_NEXT_CELL@
WP_SELECT_PREV_CELL@
WP_SET_CELL_ATTRS@
WP_SET_CELL_MARGINS@
WP_SET_CELL_VERT_ALIGN@
WP_SET_CELL_WIDTH@
WP_SET_SELECTED_CELL_ATTRS@
WP_SET_SELECTED_CELL_MARGINS@

Technical Terms

2-8 Words Technical Reference

WP_SET_SELECTED_CELL_V_ALIGN@
WP_SET_SELECTED_CELL_WIDTH@
WP_SHIFT_CELLS@
WP_SWAP_CELLS@

Related Definitions:

Bead; Column, Table; Row; Table

Column, Table

A set of cells that occupy the same logical position in adjacent rows
(that is, within a table) are referred to as a column. For example, the
third cell in every row of a table represents the third column. It could
occur that some rows in this table do not have three cells; a column
does not necessarily have a cell in each row.

Macros that deal with column and cell numbers use a zero-based
system; that is, the first cell in a row is cell 0, the second cell is cell 1,
and so on.
Related User Interface:

Table ➝ Insert Cells
Table ➝ Select Column

Related Macros:

WP_COL_NUM@
WP_GET_RANGE_OF_COLUMN@
WP_GET_RANGE_OF_NTH_COLUMN@

Related Definitions:

Cell; Row; Table

Technical Terms

Technical Terms 2-9

Current Selection

At all times, either a cursor or a single selection is displayed in the
document. Either of these can be referred to as the current selection.
Most operations deal with the current selection.

Related Macros:

WP_GET_CURRENT_RANGE@
WP_HAVE_SELECTION@
WP_LOCATION_OF_CURSOR@
WP_SELECT_RANGE@
WP_SET_CURSOR@

Related Definitions:

Cursor; Selection

Cursor

The current selection can be a cursor (which by default appears as an I-
bar). The cursor can only be placed in a location where it is legal to
type. Any operation that inserts material (typing, pasting, inserting a
field, and so on) will insert this material at the cursor.

Related Macros:

WP_FORCE_CURSOR@
WP_LOCATION_OF_CURSOR@
WP_RANGE_IS_CURSOR@
WP_SET_CURSOR@

Related Definitions:

Current Selection; Location; Range

Technical Terms

2-10 Words Technical Reference

Embedded Object

An embedded object is an object representing (usually) non-Words
material placed within the document. This material is completely
stored within the document; in contrast, a linked object has its
information stored in an external file.

An embedded object is defined by an embedded object field. The field
value contains the beads that represent the foreign material. For a
picture object, this will be a single Bitmap bead; for an object in Words
material format, this will be the set of beads (e.g. Text, Paragraph, Row
Start, Cell End) required to represent the object.

The field method contains a unique string (for example, "object2").
These strings correspond to object beads that are stored after the main
flow. The object bead contains the embedded material in its native
format. Double-clicking upon the object will bring up the foreign
application (appropriate for this type of material) to edit it.

Note that it is the contents of the object bead, not the field value, that is
given to the foreign application; any edits to the field value are lost in
this process. (This occurs because the Words beads representing the
material in the field value may not be rich enough to preserve all the
foreign material’s information.)

For example, a Spreadsheet is represented by a table; this table has no
knowledge of cell formulas. By retaining the original Spreadsheet
material, you can edit it in Spreadsheets again. It is helpful to think of
the field value of an object as just a "view" or "snapshot" of the foreign
material.

As of release 4.3, a Words document can contain an embedded Words
object. This is most useful in picture format.

Related User Interface:

Format ➝ Embedded Objects
Format ➝ Graphics

Technical Terms

Technical Terms 2-11

Insert ➝ Object ➝ [all]

Related Macros:

WP_INSERT_AUDIO_INSET@
WP_INSERT_EQUATION_INSET@
WP_INSERT_GR_INSET@
WP_INSERT_GR_INSET_IN_FRAME@
WP_INSERT_QUERY_INSET@
WP_INSERT_SS_INSET@
WP_OPEN_INSET@

Related Definitions:

Bead; Field; Field Value; Linked Object; Main Flow; Object; Picture; Table

Evaluation

When a field is evaluated, Words uses the field method to generate a
new field value. This new value replaces the old field value.

Related User Interface:

Utilities ➝ Field Editing

Related Macros:

WP_EVAL_FIELDS@
WP_EVAL_ALL_FIELDS@

Related Definitions:

Field; Field Method; Field Value

Technical Terms

2-12 Words Technical Reference

Field

A field is a special type of document material that consists of a field
method and a field value, only one of which is visible at a time.
Evaluating the field method generates the field value.

The beads that make up a field are as follows:

1. The Field Start bead

2. Beads for the field method (usually a single text bead)

3. The Field Split bead

4. Beads for the field value

5. The Field End bead

If a selection includes the start or the end of a field, the selection is
expanded to include the entire field.

Beginning at Release 3.2 of Applixware, the cursor can either be just
before the Field Start bead or just before the first bead of the field value
when the user is in normal viewing mode. While the bead position is
different, the viewing position is identical. Applix Words lets you
know which position you are in by displaying a message in the status
line at the bottom of the screen. This message will indicate if the the
cursor is "Before" or "In" the field. Similarly, a cursor that is before the
Field End bead is indicated as "In" the field.

Related Macros:

WP_EVAL_ALL_FIELDS@
WP_EVAL_FIELDS@
WP_FIND_FIELD_OF_BEAD@
WP_FIND_MATCHING_FIELD_END@
WP_FIND_MATCHING_FIELD_SPLIT@
WP_FIND_MATCHING_FIELD_START@

Technical Terms

Technical Terms 2-13

WP_GET_FIELD_METHOD@
WP_GET_FIELD_NESTING_LEVEL@
WP_INSERT_FIELD@
WP_SELECT_FIELD_VALUE_OF_FIELD@
WP_UNFIELD@

Related Definitions:

Bead; Evaluation; Field Method; Field Value; Selection

Field Method

A field method is a set of instructions in the form of a text string that,
when evaluated, generate a field value. The field method always starts
with the field type (for example, date or page_number). It is usually
followed by a number of flags or parameters.

In normal viewing mode, field methods are not visible; turn on View ➝
Field Methods to see them. While in this mode, the corresponding field
values are no longer visible. Field methods are displayed in curly
braces (for example, {date 0}). When they are visible, field methods can
be edited just like normal text; a field with an edited method is re-
evaluated when you return to normal viewing mode.

Related User Interface:

View ➝ Field Methods

Related Macros:

WP_GET_FIELD_METHOD@

Related Definition:

Field Value

Technical Terms

2-14 Words Technical Reference

Field Value

A field value is a set of document material generated by the evaluation
of the corresponding field method. In normal viewing mode, field
values look like any other document material. Most fields are protected,
which means you cannot put the cursor into the field value nor can the
selection include only part of the field value. The field can be
unprotected using the Utilities ➝ Field Editing ➝ Protect/Unprotect
Fields command.

Before Release 4 of Words, the cursor could not be placed at the very
beginning or end of the field value. (This is just after the Field Start
bead or just before the Field End bead.)

When a field is evaluated, the current field value is discarded and
replaced by a new field value. Only local text attributes that were
consistent across the entire field value are preserved.

 Related User Interface:

Utilities ➝ Field Editing ➝ Protect/Unprotect Fields
Utilities ➝ Field Editing ➝ Select Field Value

Related Macros:

WP_SELECT_FIELD_VALUE_OF_FIELD@

Related Definitions:

Cursor; Evaluation; Field Method; Selection

Flow

A flow is a self-contained group of document material. A document
always contains a main flow. It also includes separate flows for each

Technical Terms

Technical Terms 2-15

header, footer, or footnote. In general, any low-level operation that
begins in one flow cannot continue into another.

Every flow ends with a paragraph bead that cannot be deleted.

The current selection cannot extend across multiple flows.

Certain operations are only available within the main flow; for
example, if your cursor is in a footnote body, you cannot insert a
footnote. Some operations that start in the main flow (for example,
Find & Replace and Spellcheck) continue into header, footer, and
footnote flows.

Related Macros:

WP_GET_BEAD_FLOW_BOUNDS@
WP_GET_DOC_BOUNDS@
WP_GET_FLOW_BOUNDS@
WP_IN_FOOTNOTE@
WP_IN_HDRFTR@
WP_IN_MAIN_FLOW@
WP_SELECT_TO_FLOW_END@

Related Definitions:

Current Selection; Main Flow; Paragraph Bead

Footnote

A footnote has two parts:

• The footnote reference, which is a field that controls the footnote
indicator (usually a superscripted number) in the document’s
main flow. This field cannot be placed in any other flow. See
Chapter 3 for more information on this field.

• The footnote body, which defines a separate flow. This flow consists
of a footnote body field followed by the document material

Technical Terms

2-16 Words Technical Reference

representing the contents of the footnote. It concludes with a
paragraph bead. The footnote body field refers back to the
matching footnote reference field and duplicates the footnote
indicator. See Chapter 3 for more information on this field.

A footnote can either be defined as "bottom-of-page" or "end-of-
document". A separate series is used for each type’s numbering. For
bottom-of-page footnotes, the footnote bodies are displayed in a
rectangular area below the main flow’s rectangle and above the footer
rectangle (if it exists). A horizontal bar is also displayed between the
main flow rectangle and the footnote rectangle.

Related Macros:

WP_IN_FOOTNOTE@
WP_INSERT_FOOTNOTE@
WP_VALIDATE_FOOTNOTE_LOCATION@

Related Definitions:

Field; Flow; Main Flow; Paragraph Bead

Form and Form Mode (Beginning at Version 4)

A form is a table that whose purpose is to have a user fill-in values in
cells. Some of the cells have special properties that are only activated
in Form mode.

Cell properties that Forms mode makes use of are as follows:

Cell Id A name that identifies a cell

Next Cell Id The Cell Id of the cell that logically follows this
cell in the form.

Locked A flag that indicates if the form user can navigate
into this cell

Technical Terms

Technical Terms 2-17

Double-click
macro

The name of the ELF macro invoked when a user
double-clicks in this cell while in Form mode

Entry macro,
Exit macro

The name of the ELF macro invoked when the
cursor enters or exits this cell in Form mode.

A form is created as a table. The form’s designer will use the
commands with the Table Form ➝ Editor dialog box to describe the
form’s behavior when the document is placed in Form mode. In
addition, ELF macros can be written if you need to control the form’s
behavior or validate the information typed by users.

The Table ➝ Form Mode command turns Form mode on and off. If a
document is saved in Form mode, it will be in Form mode when it is
reopened.

When a document is in Form mode:

• Locked calls cannot be selected or deleted

• Any macros set for the cell are run

• The Goto Next/Previous Cell macros use the Next Cell Id property
of the current cell

• The user cannot directly drag the cell borders.

Related Macros:

WP_GET_FORM_MODE@
WP_SET_FORM_MODE@
WP_TOGGLE_FORM_MODE@

Related Definitions:

Cell

Technical Terms

2-18 Words Technical Reference

Frame

A frame is usually thought of as being a rectangular container which
can hold document material. However, it is really a set of paragraph
attributes that imposes an alternate display position and margins for
the paragraph. Adjacent paragraphs with equivalent frame properties
appear to be merged into a single frame.

Although framed material may appear anywhere on the page, its
logical location (in terms of beads) is indicated by the frame anchor
symbol (which is visible if View ➝ Format Characters is on). For
example:

In this illustration, paragraphs A, B, and C are "normal" and paragraph
F is framed. The frame anchor is visible to the left of paragraph C. This
indicates the contents of paragraph F actually falls between paragraphs
B and C regardless of where paragraph F is actually displayed. Thus if
you selected paragraphs B and C, paragraph F is also selected; a search
operation would examine paragraph B, then F, then C.

If you unframed paragraph F, its contents would appear after
paragraph B. By convention, the framed paragraph is anchored to the
paragraph it follows; that is, F is anchored to B.

Framed material always appears on the same page as the paragraph to
which it is anchored. Using the Format ➝ Frame dialog box, you can
control where the contents of the frame are displayed:

• Relative to the paragraph to which it is anchored

• Relative to the page upon which it falls

Technical Terms

Technical Terms 2-19

Related User Interface:

Insert ➝ Frame
Format ➝ Frame

Related ELF formats:

format wp_frame@
see wp_.am in axdata/elf

Related Macros:

WP_APPLY_FRAME@
WP_FORMAT_FRAME@
WP_GET_ACTUAL_FRAME_SIZE@
WP_GET_FRAME_ATTRS@
WP_NEW_FRAME@
WP_SELECT_RANGE_FRAME@

Related Definitions:

Beads

Glossary Definition & Glossary Field

A glossary definition is a set of document material that is assigned a
unique name. This information is stored before the main flow.

A glossary field displays the contents of the glossary’s definition as its
field value. See "Glossary Field" in Chapter 3 for more information.

A style definition can use a glossary. If a style using a glossary is
applied to a paragraph, the glossary field is placed at the beginning of
the paragraph.

Related Definitions:

Field; Field Value; Style

Technical Terms

2-20 Words Technical Reference

Header & Footer

A header or footer can contain almost any type of document material.
This material is not considered to be in the main flow of the document.
Instead, the header or footer defines a separate flow for the material.
This flow is displayed in a rectangular area at the top or bottom of the
page (use View ➝ Header/Footer Boundaries to see these rectangles).

A header or footer definition is attached to a section. This means that a
header or footer is only defined within its section. (A section’s
definition may allow it to use the same header or footer information as
a previous section). Material in a header or footer is repeated across
multiple pages within its section according to its type:

• Default (for example, Quick Header/Footer): all pages

• First: first page of section only

• Last: last page of section only

• Odd/Even: odd or even pages of section only

Only one set of beads represents the material in a header or footer,
even if the material appears on more than one page. For example, if a
default header appears on all pages in the document and you put your
cursor into the header on page 3, you are not really "on" page 3; you
are in the header flow.

A Find & Replace or Spellcheck operation begun at this point will
operate only within the header flow; it will not examine page 3 or any
other page. Edits to the header do not just alter it on page 3; the edits
are visible on all pages upon which this header is displayed.

The page number and cross reference fields, when placed in a header
or footer, are reevaluated on each page displaying a header or footer.
This means that the header and footer’s information can differ from
page to page. All other material in the header and footer appears the
same on every page.

Technical Terms

Technical Terms 2-21

Page number and cross reference field reevaluation occurs at display
time; the field value is not altered. This means that the field value of
the page number and cross reference fields are irrelevant. (Page
number field values are always irrelevant; cross-reference field values
are irrelevant when they are a header or footer).

Related ELF formats:

format wp_hdrftr@
see wp_.am in axdata/elf

Related Macros:

WP_GET_CURRENT_HDRFTR_INFO@
WP_GET_HDRFTR_FROM_NAME@
WP_GET_HDRFTR_INFO@
WP_GET_HDRFTR_MARGINS@
WP_GOTO_EVEN_FOOTER@
WP_GOTO_EVEN_HEADER@
WP_GOTO_FIRST_FOOTER@
WP_GOTO_FIRST_HEADER@
WP_GOTO_LAST_FOOTER@
WP_GOTO_LAST_HEADER@
WP_GOTO_ODD_FOOTER@
WP_GOTO_ODD_HEADER@
WP_IN_HDRFTR@
WP_SELECT_CURRENT_HDRFTR@
WP_SET_CURRENT_HDRFTR_INFO@
WP_SET_HDRFTR_INFO@
WP_SET_HDRFTR_MARGINS@

Related Definitions:

Bead; Field Value; Flow; Main Flow

Technical Terms

2-22 Words Technical Reference

Inherited Attributes

In document material, an attribute that is marked as inherited derives
its value from the setting in the material’s paragraph style. Changes to
the style’s definition for this attribute alter the effective (visible)
appearance of this attribute. In contrast, local attributes are unaffected
by changes to the style.

Inherited attributes can also be set in styles.

Related Definitions:

Local Attributes; Style

Inset

An inset is another name for an object.

Related Definitions:

Object

Level

Level is an attribute of a paragraph. It controls the display of series
fields within the paragraph. It can also control the indentation of the
paragraph. In the user interface, levels are numbered from one (the
"highest" to 10 (the "lowest"); internally, levels are zero-based (thus
zero through 9). Zero-based numbers are used in this definition.

The Demote macro lowers the level (increases the level number) of a
paragraph. The Promote macro raises the level (decreases the level
number) of a paragraph.

Level controls the display of series fields. The series definition
indicates a format for each level; for example, Arabic numbering for

Technical Terms

Technical Terms 2-23

level 1, capital letters for level 2, and small letters for level 3. If the
series definition indicates that multiple levels are not being displayed,
only the format for that level is visible. For example, assume that the
series defined above is used as a glossary for the following paragraphs:

4. This is a level 1 paragraph

A. This is a level 2 paragraph

a. This is a level 3 paragraph

The series field can, however, override the paragraph level. See
Chapter 3 for more information.

The level can also alter the indenting of a paragraph. Every paragraph
has a first and left indent. If levels are affecting the indent, then the
following value is added to the first and left indent:

level_number * level_indent

The level_indent is set using the Format ➝ Document Settings dialog
box. The level indent is only applied to the individual paragraph
contents if the Level Affects Indent paragraph attribute is set TRUE for
the paragraph, which is the default.

If paragraph is indented due to its level, this extra indentation is not
shown in the Paragraph Settings dialog box indent entry fields. Also,
if the user desires that certain paragraphs be given a different level (for
example, to affect any embedded series fields) without affecting their
indents, the "Level Affects Indent" toggle can be turned off.

Related Definitions:

Paragraph; Series

Technical Terms

2-24 Words Technical Reference

Linked Object

A linked object is an object whose contents are contained in a separate
file (Words or non-Words). The linked object provides a view of the
file’s current contents. Contrast this with an embedded object: an
embedded object stores this material completely within the document.

A linked object is defined by a linked object field. The field value
contains the beads that represent the foreign material. For a picture
object, this will be a single Bitmap bead; for an object in Words
material format, this will be the set of beads (e.g. Text, Paragraph, Row
Start, Cell End) required to represent the object.

The field method contains the filename that contains the linked
information. By default, this is the absolute pathname; however, it can
be edited (in field method mode or from the Format ➝ Linked Object
dialog box) and turned into a relative pathname. A URL can also be
used, if Applixware is properly configured to access the Web. Double-
clicking upon the object invokes the foreign application. Note that it is
a filename that is presented to the foreign application, not the field
value. This means that edits made to the field value will be lost. See
"Embedded Object" earlier in this chapter for more information.

When you double-click on a linked object, edit the object in its parent
window, and save, the changes are immediately reflected in the
containing Words document. The situation is different if you
independently edit a file that happens to be linked into a containing
Words document. For an Applixware document stored locally, if you
edit it with an Applixware application under the same Applixware
session, the changes again should be reflected immediately. Under any
other circumstance (e.g. a non-Applixware file, or any file edited with
a non-Applixware application), the link polling interval determines the
frequency that linked files are examined to detect modification. By
default, this interval is 5 minutes. This default can be overridden by
setting the profile variable wpLinkPollSeconds to the desired number
of seconds. A link to a URL, however, will never update automatically.

Technical Terms

Technical Terms 2-25

When a linked file is deleted, the field value will contain an error
message.

The presence of linked files should be considered when a Words
document is copied from one place to another.

A Words file can be linked to a Words document. The field value for
this object does not contain an entire document; rather, it contains
(approximately) the main flow of the linked Words file.

A linked object can be localized (converted into an embedded object).
This is done through the Format ➝ Object ➝ Object Properties dialog
box.

Related User Interface:

Insert ➝ Object From File ➝ [all]
Format ➝ Object ➝ Object Properties

Related Macros:

WP_CHANGE_LINK_INFO@
WP_CHILD_LINK@
WP_GET_DOC_LINKS_INFO@
WP_GET_LINKS_INFO@
WP_INSERT_LINK_FILE_FIELD@
WP_IS_CHILD@
WP_SET_DOC_LINKS_INFO@
WP_SET_LINKS_INFO@

Related Definitions:

Bead; Embedded Object; Evaluation; Field; Field Method; Field Value;
Localization; Object, Picture

Local Attributes

In document material, an attribute that is set locally overrides the
setting in the material’s paragraph style. If, at a later time, a change is
made to the style’s definition for this attribute, this change will not

Technical Terms

2-26 Words Technical Reference

affect this material; however, it will affect material that inherits this
attribute. Local attributes can also be set in styles, which follow the
same inheritance rules. See "Style" later in this chapter for more
information.

For text and paragraph attributes, an array of flags is maintained (one
for each specific attribute such as bold, size, or line spacing) that
indicates whether the attribute is local or inherited. The following
attributes are either all inherited or all local:

• Tabs
• Border and shading
• Frame attributes
• Leading glossary
• Line Spacing

Editing any of these attributes within a paragraph forces those
attributes to become local for that paragraph or style.

Related User Interface:

Format ➝ Borders & Shading
Format ➝ Character Settings
Format ➝ Demote
Format ➝ Frame
Format ➝ Paragraph Settings
Format ➝ Promote
Format ➝ Tab Settings

Related Definitions:

Inherited Attributes; Style
Localize

A linked object can be localized into an embedded object. After an
object is localized, it no longer depends upon (or updates to stay in

Technical Terms

Technical Terms 2-27

synch with) an external file. Instead, its contents at the time of the
localization are copied into the Words document.

Related Macros:

WP_LOCALIZE_ALL_LINKS@
WP_LOCALIZE_LINK@

Related Definitions:

Embedded object; Linked Object; Object

Location

A location identifies a unique position within a document; for
example, the position of the cursor. A location has two components:

• A bead number

• An offset

The user interface does not allow the cursor to be placed in every
potential location. Some locations are invisible; other locations may be
located in inaccessible flows.

Locations can be expressed in two formats: "start format" and "end
format". Suppose bead 50 is a text bead containing the string "CAT",
and bead 51 is a paragraph bead. The location between the beads can
be expressed in start format as bead 51, offset 0 or in end format as
bead 50, offset 3. (See "Offset" later in this chapter.) A cursor’s location
is always expressed in start format; end format is only used for
expressing the end of a range.

Related Macros:

WP_GET_BEAD_END@
WP_ILLEGALIZE_LOCATION@
WP_LEGALIZE_LOCATION@

Technical Terms

2-28 Words Technical Reference

WP_LOCATION_IN_RANGE@

Related Definitions:

Bead Number; Cursor; Flow; Offset; Paragraph Bead; Range; Text Bead

Marker Bead

A marker bead marks a position in a file with a unique string
identifier.

In ELF macros that add or delete beads, you cannot store raw bead
numbers of beads that come after the point at which material is
inserted or deleted because bead numbers are altered to close up gaps
in the numbering system. One of the ways to keep track of a location in
a file is to use a marker bead.

Marker beads are inserted before or after a bead using the
WP_INSERT_MARKER_BEAD@ macro. You can retrieve this location
using the WP_GET_MARKER_BEAD@ macro.

Note that a generic Delete operation will not delete marker beads in
the selected range. Also, inserting and deleting marker beads takes
much more computer resources than inserting and deleting tags.

Beginning at Applixware version 4, markers can be saved within a file.
Before version 4, marker beads were removed from the file before it
was saved.
Related Macros:

WP_DELETE_SELECTION_MARKS@
WP_GET_SELECTION_MARKS@
WP_IN_SELECTION_MARKS@
WP_INSERT_MARKER_BEAD@
WP_PRESERVE_SELECTION@
WP_RESTORE_SELECTION@
WP_SET_SELECTION_MARKS@

Technical Terms

Technical Terms 2-29

Related Definitions:

Bead; Bead Number; Tag

Main Flow

The main flow contains the primary contents of the document. This
flow does not include headers, footers, footnotes, style definitions,
glossaries, and so on.

The main flow ends with a paragraph bead followed by a section bead.
Neither of these beads can be deleted; even an "empty document" has
these two beads.

Related Macros:

WP_IN_MAIN_FLOW@

Related Definitions:

Bead; Flow

Multi-Cell Selection

A selection is a range that indicates what material is selected. Usually,
this range is all that is needed to identify the selected materialall
material that falls within this range is considered to be selected (and is
highlighted on the display). However, a special case exists when table
cells or columns are selected. For example, suppose you drag the
mouse from within cell 2 to cell 15:

cell 1 cell 2 cell 3 cell 4
cell 5 cell 6 cell 7 cell 8
cell 9 cell 10 cell 11 cell 12

Technical Terms

2-30 Words Technical Reference

cell 13 cell 14 cell 15 cell 16

Cells 2, 3, 6, 7, 10, 11, 14, and 15 are highlighted. The current selection
is reported as beginning with cell 2 and ending with cell 15. However,
this falsely implies that cells 4, 5, 8, 9, 12, and 13 are also selected.

For a multi-cell selection, the width of the selection in terms of number
of cells is also recorded.

In the above example, the selection is 2 cells wide. Since the selection
begins with cell 2, you now know that the second and third cell of each
row in the selection is selected.

The status line at the bottom of the Words window indicates a multi-
cell selection. In this case, it would contain the string "2 Cols". No
status messages is displayed when a non-tabular selection is made.

When writing macros that operates upon the current selection, you
must plan for multi-cell selections. The best way to do this is to use the
WP_GET_NEXT_SELECTION@ macro. This macro can be called in a
loop and will return the selected part of each row in the selection on
each cycle. In the above example, each iteration of the loop would
return a different range as follows:

• Cell 2 to cell 3

• Cell 6 to cell 7

• Cell 10 to cell 11

• Cell 14 to cell 15

If the current selection is a simple selection, the range is returned on
the first iteration of the loop.

A multi-cell selection can only occur when one or more cells in a single
table are selected. Such a selection can never contain a Row Start bead,
material from outside a table, or material from multiple tables. Even if

Technical Terms

Technical Terms 2-31

all the cells in a row are selected, the row itself is not considered to be
selected unless the Row Start bead is selected.

Dragging from cell 1 to cell 4 in the above table generates a multi-cell
selection of width 4. Note that the row is not selected. Clicking to the
left of the row (to the left of the page margin) or dragging from the
previous paragraph into the row, selects the entire row within a simple
selection. Certain functions (most notably Delete) will behave
differently in these cases.

Related Macros:

WP_GET_NEXT_SELECTION@
WP_NUM_COLS_SELECTED@
WP_SELECTION_IS_MULTIPLE@
WP_GET_NUM_SELECTIONS@
WP_SELECT_RANGE_CELLS@

Related Definitions:

Bead; Current Selection; Range; Selection; Simple Selection

Object

An object is a portion of self-contained data, displayed within a Words
document. This data can consist of Words material, or data from
another Applixware application, or material in a foreign format (e.g.
GIF or ASCII). An object is either an embedded object or a linked object.
An embedded object exists entirely and only within the containing
Words file. In contrast, the linked object represents the current view of
an external, independent file.

An object either exists as a picture, or as Words material. A picture
object is displayed in single rectangle that may be no larger than a
single Words page. The rendering is accomplished by the parent
application (e.g. Applixware Spreadsheets, for a spreadsheet inset) and
consequently appears exactly as it would in the parent application

Technical Terms

2-32 Words Technical Reference

window. If the object is not a picture, it must be converted into Words
material (text, frames, and tables). It is not limited to a single rectangle,
however, and thus can span multiple pages.

Various object types can be inset as pictures and/or Words material, as
follows:

Table 2-1 Object Types

Parent Application Permitted Object Types:

Picture: Words Material:

Words Yes Yes

Macros Yes Yes

HTML Author Yes Yes

Equation Yes No

Graphics Yes No

Spreadsheets Yes Yes

Data No Yes

As the table indicates, Graphics and Equation objects must be pictures;
Data objects must be Words material, and the remaining object types
can be either.

Embedded and linked objects are represented by fields. The field
method contains a reference to the source of the material, and the field
value contains the beads representing this material. For a picture
object, the field value will contain only a single Bitmap bead. For an
object in Words material format, the field value will contain the entire
representation of the object (e.g. a table for a spreadsheet). Note the
representation of non-Words material in Words is not exact; for
example, the table representation of a spreadsheet does not contain the
cell formulas.

Technical Terms

Technical Terms 2-33

Material from a foreign application may be inset as an embedded or
linked object within Words. In order to accomplish this, a filter must
exist to convert from the foreign format into one of the Applixware
application formats. Once this is done, the object is subject to the
requirements of the above table. For example, an Excel spreadsheet is
converted to an Applixware Spreadsheet, and can be inset as either a
picture object or as Words material, while a GIF file would be
converted into an Applixware Graphics and inset only as a picture.

If direct editing of such foreign material is desired, you must provide
an ELF macro that will bring up the foreign application when the user
double-clicks on the object in Words.

Related Definitions:

Bead; Embedded Object; Field; Field Method; Field Value; Linked Object;
Picture; Table

Object Bead

The object bead can contain non-Words material in an encoded format.
An embedded object, which provides a view of non-Words material,
refers to an object bead by means of a unique name.

Object beads are placed after the main flow of the document. By
default, if an embedded object is deleted, its object bead is also deleted
(when the document is saved); this behavior can be overridden. This
means that a Words document can contain a "library" of objects, not all
of which are visible.
Related User Interface:

Format ➝ Objects

Related Macros:

WP_ADD_OBJECT@
WP_CONVERT_OBJECT@

Technical Terms

2-34 Words Technical Reference

WP_DELETE_OBJECT@
WP_GENERATE_NEW_OBJECT_NAME@
WP_GET_OBJECTS_INFO@
WP_OBJECT_ALLOW_UNREF@
WP_OBJECT_FILTER_MACRO@
WP_OBJECT_LAUNCH_MACRO@
WP_OBJECT_IS_REFERENCED@
WP_OBJECT_NAME@
WP_SAVE_OBJECT@

Related Definitions:

Bead; Embedded Object; Field; Main Flow

Offset

An offset is a position within a bead and defines a part of a location.
The only bead that has multiple offset positions is the text bead. For
example, if a text bead contains the string "CAT", offset zero represents
the position before the ’C’, and offset one is between the ’C’ and ’A’.
Offset three is after the ’T’. This last position is also offset zero of the
following bead.

No other beads has an offset; if you specify an offset, offset zero is
before the bead and offset one is after it.

Related Macros:

WP_GET_BEAD_END@
Related Definitions:

Bead; Location; Text Bead

Technical Terms

Technical Terms 2-35

Paragraph and Paragraph Bead

All basic document material (primarily text and graphics) must be in a
paragraph; a cursor can only be placed in a paragraph.

The beads that make up a paragraph are:

• 1. Any document material

• 2. Paragraph bead

The paragraph bead contains the following information:

• The name of the paragraph’s style

• Local paragraph attributes such as line spacing or justification

• Local text attributes such as size or color ; these apply to the
display of the paragraph marker onlytext beads in the paragraph
will have their own local text attributes

• Local tabs; if they are specified, none of the style’s tabs are used

• Local frame attributes

• Local border and shading attributes

A paragraph contains every bead that comes before it up to the
preceding paragraph bead or start of flow. Paragraphs do not extend
across multiple flows or cells; however, they can extend across
sections. Every cell and flow ends in a paragraph. However, the main
flow has a section following the last paragraph.

Related Macros:

WP_FIND_BEAD_OF_PARA@
WP_FIND_FIRST_IN_PARA@
WP_FIND_LAST_PARA@

Technical Terms

2-36 Words Technical Reference

WP_FIND_NEXT_PARA@
WP_FIND_PARA_OF_STYLE@
WP_GET_CURRENT_PARA_RANGE@
WP_GET_FLAGGED_PARA_ATTRS@
WP_SET_FLAGGED_PARA_ATTRS@
WP_GET_PARA_SETTINGS@
WP_SET_PARA_SETTINGS@
WP_GET_RANGE_OF_PARA@
WP_RESET_PARA_SETTINGS@
WP_SELECT_CURRENT_PARA@
WP_SELECT_WHOLE_PARAS@

Related Definitions:

Bead; Cell; Cursor; Flow; Main Flow; Paragraph Marker; Section; Style; Text
Bead

Paragraph Marker

Paragraph beads are represented by the paragraph marker or pilcro
symbol (¶). This symbol is visible at the end of each paragraph if the
View ➝ Format Characters option is turned on.

Related User Interface:

View ➝ Format Characters

Related Definitions:

Paragraph Beads
Picture

An picture is a special type of object, which itself is a portion of self-
contained data, displayed within a Words document. This data can
consist of Words material, or data from another Applixware
application, or material in a foreign format (e.g. GIF or ASCII).

Technical Terms

Technical Terms 2-37

A picture object is rendered into a single rectangle (clipped to a single
Words page) within the Words document by the appropriate
Applixware application. For example, a spreadsheet object (whether in
Applixware Spreadsheets format, or a foreign format such as Excel) is
rendered by the Applixware Spreadsheets application. Thus the object
should appear in Words exactly as it does in the parent application. In
contrast, an object in Words material format can span multiple pages,
but the conversion into Words material may make it look somewhat
different than it does in its parent application.

All picture objects may be scaled larger or smaller. In addition, the
user interface allows a portion of the object to be displayed. For
example, a specific range of paragraphs or pages can be displayed for a
Words picture inset, and a specific cell range for a Spreadsheet picture
inset. This functionality is available through the Format ➝ Object ➝
Applix Graphics, Applix Spreadsheets, and Applix Words dialog boxes.

Picture objects may be converted to Words material format, and vice
versa, via the Format ➝ Object ➝ Object Properties dialog box, subject
to the requirements of the Object Types table in the Object section.
Prior to release 4.3, only graphics objects could be pictures. If a 4.3
document is opened by an earlier version of Applixware Words, all
other picture objects will be interpreted as Words material.

Related User Interface:

Format ➝ Object ➝ Applix Graphics
Format ➝ Object ➝ Applix Spreadsheets
Format ➝ Object ➝ Applix Words
Format ➝ Object ➝ Object Properties
Related ELF formats:

format wp_inset_info@
see wp_.am in axdata/elf

Technical Terms

2-38 Words Technical Reference

Related Macros:

WP_INSERT_LINK_FILE_FIELD@
WP_INSERT_EMBEDDED_OBJ_FIELD@
WP_GET_OBJECT_PROPERTIES@

Related Definitions:

Embedded Object; Linked Object; Object

Range

A range uniquely identifies a portion of the document. It consists of a
start and end location; the start location is in "start format" and the end
location is in "end format".

Many ELF functions accept a range as an argument; this range
indicates the portion of the document upon which it will operate.

The current selection is expressible as a range. If the current selection
is a cursor, the start and end locations both contain the cursor location
(and in this special case, the end location is in "start format").

For example, suppose bead 50 is a text bead containing the string
"CAT", and bead 51 is a paragraph bead.

• If the word "CAT" is selected, the current selection would have a
range of bead 50, offset 0 to bead 50, offset 3 or in compact
notation (50,0 to 50,3)

• If "CAT" and the paragraph marker were selected, the selection
would be (50,0 to 51,1)

• If there was a cursor in front of the ’C’, the selection would be (50,0
to 50,0)

• A cursor in front of the ’A’ would be (50,1 to 50,1)

Technical Terms

Technical Terms 2-39

• A cursor in front of the paragraph marker would be (51,0 to 51,0)

A selection contain cells may require additional information. See
multi-cell selection.

Related Macros:

WP_LOCATION_IN_RANGE@
WP_RANGE_IS_CURSOR@

Related Definitions:

Current Selection; Cursor; Location; Multi-cell Selection; Paragraph Bead;
Paragraph Marker; Text Bead

Redo

See "Undo and Redo" later in this chapter.

Row and Row Start Bead

A row consists of one or more horizontally adjacent cells. A set of
vertically adjacent rows makes up a table.

The beads that make up a row are:

• Row Start bead

• Beads for a least one cell, as described in the Cell definition earlier
in this chapter

The information contained in the Row Start bead includes:

• The row’s offset from the left margin and justification (left, center,
or right)

Technical Terms

2-40 Words Technical Reference

• The top and bottom row margins; these margins separate the row
from the material such as other rows that are above and below it

• Growth policy and height (if needed) for the row, as follows:

All cells in the row have the same height; they may have a fixed
height or grow to fit the tallest material in any of the cells, and so
on

Related User Interface:

Table ➝ Insert Cells
Table ➝ Make Row Fit
Table ➝ Merge Rows
Table ➝ Row Attributes
Table ➝ Select Row
Table ➝ Split Row Before [After] Cell

Related ELF formats:

format wp_row_attrs@
see wp_.am in axdata/elf

Related Macros:

WP_COPY_ROW@
WP_GET_FIRST_ROW@
WP_GET_LAST_ROW@
WP_GET_NEXT_ROW@
WP_GET_PREV_ROW@
WP_GET_RANGE_OF_ROW@
WP_GET_ROW@
WP_GET_SELECTED_ROW_ATTRS@
WP_INSERT_ROWS@
WP_NUM_CELLS_IN_ROW@
WP_NUM_ROWS_IN_TABLE@
WP_PUT_RANGE_IN_ROW@
WP_REMOVE_ROW@

Technical Terms

Technical Terms 2-41

WP_ROW_NUM@
WP_SET_ROW_ALIGNMENT@
WP_SET_ROW_ATTRS@
WP_SET_ROW_HEIGHT@
WP_SET_ROW_HEIGHT_TYPE@
WP_SET_ROW_INDENT@
WP_SET_ROW_MARGINS@
WP_SET_SELECTED_ROW_ALIGNMENT@
WP_SET_SELECTED_ROW_ATTRS@
WP_SET_SELECTED_ROW_HEIGHT@
WP_SET_SELECTED_ROW_HT_TYPE@
WP_SET_SELECTED_ROW_INDENT@
WP_SET_SELECTED_ROW_MARGINS@
WP_SPLIT_ROW@
WP_MERGE_ROW@

Related Definitions:

Bead: Cell; Table

Section

A section is a high-level document structure that controls the "page
layout" of the material that falls within it.

The beads that make up a section are:

• Document material

• Section bead

The section bead contains the following information:

• Page size and orientation (landscape or portrait)

• Left, right, top, and bottom margins

• Number of columns and column gutters

Technical Terms

2-42 Words Technical Reference

• Header and footer information

• Page numbering format

A section is considered to contain every bead that comes before it until
the preceding section bead or start of flow. Sections cannot extend
across flows.

Section attributes do not apply to specific pages; rather, they apply to
all material of a section. That is, there is no way to force page 3 to have
2 columns. Instead, a section can set the document material it affects
into 2 columns. This 2-column information will then be displayed on
pages. As editing operations move this material to different pages,
those pages will also be formatted by the section.

By default, the Main flow ends with a section bead (following the final
paragraph bead). This section is not displayed even if View ➝ Breaks
is on.

In a simple document, as long as all page formatting applies to the
entire document, this will be the only section.

When some document material is selected and page attributes are
applied, it turns out that two section beads need to be inserted. For
example:

• Preceding document material

• Selected document material

• Following document material

• Section bead

In the above example, the existing section bead controls the page
formatting of all the indicated material. Suppose you put the "selected
document material" into two columns. You will end up with the
following:

Technical Terms

Technical Terms 2-43

• Preceding document material

• Section bead S1

• Selected document material2 columns

• Section bead S2

• Following document material

• Section bead (original)

Section bead S2 puts the selected document material into two columns.
Section bead S1, a copy of the original, terminating section bead, keeps
the preceding document material in its original format; that is, it is as
determined by the original section bead.

The Use Section Properties toggle on the Insert ➝ Linked Object ➝
Applix Words dialog box determines whether this final section bead is
copied into the containing document (along with the rest of the
document being linked).

Related User Interface:

Format ➝ Columns
Format ➝ Header and Footer
Format ➝ Page Numbering
Format ➝ Page Setup
Format ➝ Section Type
Insert ➝ Break
Insert ➝ Quick Header [Footer]

Technical Terms

2-44 Words Technical Reference

Related Definitions:

Bead: Flow; Main Flow; Paragraph Bead

Selection

The current selection can be a selection or it can be a cursor. If it is a
selection, the selected material appears in inverse video. Any operation
that inserts material (typing, pasting, inserting a field, and so on)
replaces the selected material with the new material.

Applixware 3.0 uses a single-selection model. That is, only one
selection can exist at a time. Thus, an operation such as global search
and replace must find and replace successive instances of the target
material, rather than finding and selecting all the matches and then
replacing the selections.

A selection is described by a range. This range indicates exactly which
material is selected. Usually, this range is sufficient to identify the
selected material. The only special case is when table cells or columns
are selected.

Related Macros:

WP_SELECT_RANGE@
WP_SELECT_RANGE_CELLS@

Related Definitions:

Current Selection: Cursor; Multi-cell Selection; Range

Series Definition & Series Field

A series definition is a bead that defines the method by which an
ordered set of strings is generated. This definition includes:

Technical Terms

Technical Terms 2-45

• The format of the string for each level; ELF macros can be used to
generate such formats as January, February, ...

• Characters that separate the level

• Optional leading and trailing string

• Whether one or more levels should be displayed

The series field generates the desired string using the series definition
and then displays it as its field value. By default, the value of this
string is one greater than the previous series field value of the same
type. However, the user can override this default in a variety of ways.
See "Series Field" in Chapter 3.

Related Definitions:

Bead; Field; Field Value

Simple Selection

A simple selection is a selection described by a range such that all
material that falls within the range is in fact selected. If a simple
selection contains table material, it contains entire rows. Contrast this
form of selection with Multi-cell Selection.

Related Macros:

WP_SELECTION_IS_MULTIPLE@
WP_SELECT_RANGE@

Related Definitions:

Multi-cell Selection; Range; Selection

Technical Terms

2-46 Words Technical Reference

Style

A style is a set of attributes that defines the initial look of a paragraph
and its contents. A document contains at least one (and usually
several) style definitions. The initial paragraph attributes inherit the
style’s attribute definition.

The style is defined by a single bead called the style bead. Style beads
reside before the main flow. An end user can access these style
definitions by using the Format ➝ Style dialog box.

A style definition contains the following information:

• Paragraph attributes (for example, line spacing, justification)

• Text attributes (for example, size, color)

• Tabs

• Frame attributes

• Border and shading attributes

• Glossary

Style definitions are arranged in a hierarchy (a "tree structure") as
follows.

• There is only one top-level style; it is usually named "Normal"

• All other styles are either children of the top-level style, or children
of its children, and so on

• Every style has one parent; the only exception is the top-level style,
which has no parent

• Any style can either set its own unique attributes or inherit them
from its parent.

Technical Terms

Technical Terms 2-47

• The top level style has all its attributes set locally; that is, no
attributes are inherited

This tree structure determines the visible, or effective, attributes of
paragraph material. For example, suppose some 13-point text exists in
a document.

• The text may have this size attribute set locally

• The text size may be the point size defined explicitly for this
paragraph’s style

• The text size may be the point size defined implicitly for this
paragraph’s size by inheritance from a parent style

For every attribute, the attribute’s definition can come from one of
three places:

• From the text or paragraph

• From the paragraph’s style

• From a parent of the paragraph’s style

Searching "upwards" in the tree, the first non-inherited value found
specifies the attribute to be used. Since the top-level style has all local
attributes, an explicitly set attribute must exist. If document material
inherits an attribute from a style, and the style’s definition changes, the
look of the displayed material will be automatically updated.

Related User Interface:

Format ➝ Apply Style
Format ➝ Style

Related Definitions:

Bead; Main Flow

Technical Terms

2-48 Words Technical Reference

Table

A table is a set of vertically adjacent rows. A table has no special beads
or properties beyond those contained in the rows. If rows are
separated by a paragraph that is not in a cell, the rows are not adjacent.
This means the rows are not in the same table.

Related User Interface:

Table ➝ Convert Table to Text
Table ➝ Convert Text to Table
Table ➝ Insert Table
Table ➝ Select Table
Table ➝ Split ➝ Table Before [After] Row

Related Macros:

WP_GET_FIRST_ROW@
WP_GET_LAST_ROW@
WP_GET_RANGE_OF_TABLE@
WP_INSERT_TABLE@
WP_INSERT_TABLE_AT_LOC@
WP_IS_BEAD_IN_TABLE@
WP_NUM_ROWS_IN_TABLE@

Related Definitions:

Bead; Paragraph; Row

Tag

A tag marks a location in a file with a unique string identifier.

In ELF macros that add or delete beads, you cannot store raw bead
numbers of beads that come after the point at which material is
inserted or deleted because bead numbers are altered to close up gaps

Technical Terms

Technical Terms 2-49

in the numbering system. One of the ways to keep track of a location in
a file is by using a tag.

• A location can be "tagged" using the WP_ADD_TAG@ macro

• It can be retrieved using the WP_GET_TAG_LOCATION@ macro

If a tagged location is deleted, the tag "moves forward" to the next
location. This could cause tags to overlap. For example, assume that a
paragraph contains more than one tag and the paragraph is deleted. In
this case, all the tags would point to the first location in the next
paragraph. In addition, the original tag ordering is lost.

If ordering is important, use marker beads. However, inserting and
deleting marker beads is more (computationally) expensive than using
tags.

Tags are not saved into the .aw file.

The WP_TAG_INFO_DLG@ dialog box can help you debug an ELF
macro that uses tags. (It is listed on the Help pulldown within the
menubar editor as follows: Help ➝ Document Information ➝ Tag
Information; however, it is not displayed in the distributed menubar.) It
contains a list of all the current tags and their corresponding locations.

Related Macros:

WP_TAG_SELECTION@
WP_TAG_RANGE@
WP_RESTORE_TAGGED_SELECTION@
WP_RETRIEVE_TAGGED_RANGE@
WP_TAG_INFO_DLG@

Related Definitions:

Bead; Bead Number; Location; Marker Beads

Technical Terms

2-50 Words Technical Reference

Text Bead

All text in a document is stored in text beads. A text bead contains the
following information:

• The text

• The text’s local text attributes (for example, size, color)

Every character in the text bead has the same displayed attributes. If a
change in a displayed attribute occurs, then you know that the
information is associated with another text bead. For example, a
paragraph that contains a bold word somewhere within the paragraph
must contain at least 3 text beads; the middle one indicates the bold
attribute and the leading and trailing beads that do not have this
attribute.

Text beads must not be empty.

Every text bead is associated with a paragraph; the paragraph’s style
determines the inherited text attributes.

Related Macros:

WP_GET_FLAGGED_TEXT_ATTRS@
WP_SET_FLAGGED_TEXT_ATTRS@
WP_GET_TEXT_ATTRS@
WP_SET_TEXT_ATTRS@
WP_RESET_TEXT_ATTRS@

Related Definitions:

Bead; Local Attributes; Paragraph; Style

Technical Terms

Technical Terms 2-51

Undo and Redo

Every time a bead is changed or deleted, the original bead is first
preserved. When a bead is added, the new bead is added to the "undo"
list. The Undo function reverses the operation (restoring a deleted
bead or the original version of a changed bead and removing an added
bead). Redo undoes the Undo in a symmetric fashion. Only bead-level
information is recorded. This means that other changes such as
changing a View command cannot be undone.

Data about bead-level operations is stored in a temporary file. The
number of operations that can be undone is limited by the size of this
file.

Storing this data clearly has a performance cost. The macro
WP_UNDO_ACTIVATE@ can turn Undo recording off and back on.
You would shut off recording when running an ELF macro that does
not give the user an opportunity to Undo.

The ELF macro writer should nest the highest-level user interface
between WP_UNDO_START@ and WP_UNDO_END@, if the user is
to be able to reverse the action with a single Undo command.
Otherwise, the user will be forced to Undo the individual commands
making up your macro.

Macros should catch their own errors and issue a WP_UNDO_END@
(assuming a prior WP_UNDO_START@ is in effect). If this is not
done, and a macro throws an error and exits while a
WP_UNDO_START@ is in effect, the Undo nesting will be
unbalanced. The Undo file will be discarded when this is detected,
denying the user the chance to Undo any changes.

Related User Interface:

Edit ➝ Redo
Edit ➝ Undo

Technical Terms

2-52 Words Technical Reference

Related Macros:

WP_REDO@
WP_UNDO@
WP_UNDO_ACTIVATE@
WP_UNDO_CLEAR@
WP_UNDO_END@
WP_UNDO_START@

Related Definitions:

Bead

3-1

3 Field Method
Syntax

This chapter describes the syntax of field methods. The following
fields are discussed:

Conditional Variable
Cross Reference
Cross Reference Source
Date
Entry
Footnote
Footnote Body
Glossary
HTML Tag
Hyperlink
Hypertarget
Index
Link
Local Inset

Macro
Macro String
Make Index
Make Table of Contents
Merge
Page Count
Page Number
Plain
Printer Code
Series
Soft Hyphen
Time
Variable String

Field Methods

3-2 Words Technical Reference

Field Methods

A field method is the part of the field structure that contains the
material (usually simple text) that identifies and defines the field. A
process called evaluation analyzes this field method and generates a
field value, which is usually what the user sees in the document. For
example, the date field contains a method that identifies the field type
(date), and contains a code indicating the desired format. The
displayed field value is the current date in the desired format.

The View ➝ Field Methods menu option controls whether all field
values (the default) or field methods are displayed.

When a field is created through the user interface, the dialog box
settings generate the field method automatically. However, if the user
wants to edit the field method or add a feature not supported by the
dialog box interface, a knowledge of the proper field method syntax is
necessary.

Field Evaluation

All fields are evaluated as follows:

• When the field is first created

• When the field method is edited

• When the field is selected and the Tools ➝ Field Editing ➝
Evaluate Fields menu item is used

Any other circumstances that trigger a field’s evaluation are listed in
the field descriptions that follow.

Field Methods

Field Method Syntax 3-3

Field Method Syntax Conventions

The following conventions are used in this chapter:

• Bold Helvetica represents literal text, and needs to be specified
exactly as indicated.

• Italicized Helvetica represents variable information, either to be
specified by the user, or selected from a limited list of options.

• Items in [square brackets] are optional.

• Items in "double quotes" should be specified with double quotes.

• Items separated by the "or" symbol (|) offer a set of alternatives.
Unless otherwise indicated, only one may be selected.

• If your string contains a double-quote character (") or a backslash
character (’\"), you must type a backslash escape character before it.
For example: \" or \\.

Error Handling

If the evaluation of a field method generates an error, the error is
usually placed in the field method. This can be due to improper field
method syntax, as follows:

ERROR: Too few
field arguments

A required part of the field syntax is missing

??? New field has not yet been evaluated or some
undefined problem

Missing a quoted
string argument

A flag was specified in the field method that is
should be followed by a quoted string; however,
no string was detected

Field Methods

3-4 Words Technical Reference

Errors that are specific to one or more fields are documented with the
field.

Common Flags

The evalFlags and the textStyle flags can be used in many or all of the
fields.

evalFlags

evalFlags = -readEval | -printEval | -saveEval | -noEval |
-emptyValue

The evalFlags force the reevaluation of a field under the following
circumstances:

Table 3-1 evalFlags

Flag Meaning

-readEval Evaluate field when the document is opened

-printEval Evaluate field when the document is printed

-saveEval Evaluate field when the document is saved

-noEval If evaluation occurs, it has no effect; the Field Start
contents are not changed

Field Methods

Field Method Syntax 3-5

Table 3-1 evalFlags (cont.)

Flag Meaning

-emptyValue If evaluation occurs, an empty field value is
generated; the method is ignored

-noEval has higher precedence than -emptyValue;
that is, if -noEval is used, the existing contents do not
change

NOTE: This option is available beginning at
Applixware version 4

-preserveVal If evaluation occurs, only the attributes of the field
can change (e.g. shrink to fit, text attributes). The
actual text in the field value does not change.

NOTE: This option is available beginning at
Applixware version 4.3

One or more of these flags can be specified in the same field.

textStyle Flag

textStyle = -textStyle "styleName"

The textStyle flag applies the text attributes of the specified style to the
text in the field value. styleName is the name of the style (as it appears
in the Style pulldown and the Style dialog box) and must be enclosed
in double quotes.

Conditional Variable Field

3-6 Words Technical Reference

Conditional Variable Field

Description When evaluated, the Conditional Variable field examines the desired
document variable; if it is not empty or zero, the remaining material in
the field method is copied into the field value.

The Conditional Variable field is reevaluated whenever the referenced
document variable changes in value.

Format { if_var "varName" material [evalFlags] }

Arguments The varName is the name of the document variable in question (as
displayed in the Utilities ➝ Special Fields ➝ Set Document Variables
dialog box); it must be enclosed in double quotes. It is evaluated as:

Variable Type Conditional Status

Number TRUE if variable exists and is non-zero

String TRUE if variable exists and is not the empty
string

Array TRUE if the variable exists and has an array size
of at least one item

anything else Puts an error message in the field value

If the variable does not exist, it is FALSE. The remainder of the field
method is the material copied into the field value if appropriate.

Interface Tools ➝ Special Fields ➝ Conditional Upon Variable

Cross Reference Field

Field Method Syntax 3-7

Cross Reference Field

Description If the Cross Reference field is in the main flow then, when it is
evaluated, the Cross Reference field copies the field value of the
matching Cross Reference Source field into its own field value. For a
Cross Reference field in a header or footer, the material from the
matching Cross Reference Source field is only displayed; the beads
are not actually copied. See "Cross Reference" in Chapter 2 for more
information.

The Cross Reference field is reevaluated if the matching Cross
Reference Source field has the "live" property, and the material in the
Cross Reference source field is edited.

Format { xref "xrefName" [directionFlag] pageFlag [evalFlags] [textStyle] }

Arguments The xrefName flag provides a unique name for the material in the field
value; the same name is used by Cross Reference fields to access this
material. It must be enclosed in double quotes.

The directionFlag and pageFlag are used when more than one
matching Cross Reference Source field can exist in the document.
These flags help identify which Cross Reference Source field should
be used. For example, in a report with multiple sections, each section
may define a section name in a Cross Reference Source field with a
common name and repeat the section name within the section (for
example, in a header) by using a Cross Reference field.

The directionFlag indicates the direction the search for the matching
Cross Reference Source field should take:

Cross Reference Field

3-8 Words Technical Reference

Table 3-2 directionFlags

directionFlag Effect on search

-prev Starting at the Cross Reference field, search
backwards for the first matching Cross
Reference Source field encountered; stop at the
top of the document

-next Starting at the Cross Reference field, search
forwards for the first matching Cross
Reference Source field encountered; stop at the
bottom of the document

(none) First look backwards; if a matching Cross
Reference Source field is not encountered, look
forwards

The pageFlag is ignored unless the Cross Reference field is in a
header or footer. In this case, it is required. If a Cross Reference field
is in a header or footer, the matching Cross Reference Source field is
searched for within the main flow of the document, not within the
header or footer. If the same header or footer is visible on more than
one page, the search is carried out for each page.

For every page, the pageFlag controls whether the search should begin
at the top or the bottom of the page, as follows:

Table 3-3 pageFlag

pageFlag Effect on search

-pageTop Start searching at the top of the page upon which
the header or footer falls in the direction indicated
by the directionFlag

-pageBottom Start searching at the bottom of the page upon
which the header or footer falls in the direction
indicated by the directionFlag

Cross Reference Source Field

Field Method Syntax 3-9

Error Handling "No such cross-reference source field":
The source field could not be located.

Interface Tools ➝ Cross Reference ➝ Cross Reference

Cross Reference Source Field

Description The Cross Reference Source field indicates that its field value is
available to be cross-referenced. No action is taken when the field is
evaluated.

Format { xref_source "xrefName" [-live] }

Arguments The xrefName flag provides a unique name for the material in the field
value. The same name is used by Cross Reference fields to access this
material. It must be enclosed in double quotes.

The -live flag, if specified, indicates that when the cross reference
source material is edited, the matching Cross Reference fields should
copy the updated material.

Interface Tools ➝ Cross Reference ➝ Cross Reference Source

Date Field

3-10 Words Technical Reference

Date Field

Description When evaluated, the Date field generates a string representing the
current date in the specified date format.

Format { date -format "formatStr" | formatCode [evalFlags] [textStyle] }

Arguments The -format "formatStr" flag and value pair specify the exact format of
the date to be displayed in the field value. The string consists of a
mixture of day, month, and year codes with miscellaneous text. For
example, the string "Mmm d, yyyy" would yield (for example) "August
24, 1993"; note the preservation of the spaces and comma. A list of the
day, month and year codes can be found in the file datetime.sp under
the Applixware release directory, or in help under DATE_FORMAT@
macro. Note the use of formatStr is new for release 4.1. For earlier
releases, the formatCode should be used as described below.

The formatCode is an integer representing a date format, as shown
below. Release 4.0 and earlier will ignore the formatStr and use the
formatCode. Note that it is acceptable to specify both a formatCode
and a formatStr; earlier releases will use the former and later releases
the latter.

Date Field

Field Method Syntax 3-11

Table 3-4 Date Formats

formatCode Matching formatStr Display

0 mm/dd/yy 08/24/93

1 Mm dd, yyyy Aug 24, 1993

2 dd.mm.yy 24.08.93

3 dd Mm yy 24 Aug 1993

4 Mmm dd, yyyy August 24, 1993

5 yyyy-mm-dd 1993-08-24

6 yy-mm-dd 93-08-24

7 yyyy mm dd 1993 08 24

8 yy mm dd 93 08 24

9 yyyymmdd 19930824

10 yymmdd 930824

11 dd/mm/yy 24/08/93

12 dd.mm.yyyy 24.08.1993

Interface Insert ➝ Date & Time

Entry Field

3-12 Words Technical Reference

Entry Field

Description The Entry field, like the Form cell, provides a dynamic and constrained
area for the entry of text when Words is in Forms mode. No action is
taken when the field is evaluated. The Entry field is displayed as an
area lightly shaded in gray; this shading does not print. This field is
available in release 4.1.

Format { entry "fieldId" [-locked] [-minWidth width] [-maxChars num]
[-nextIfFull] [-nextId "nextId"] [-case caseFlag]
[-underline] [-promptText "text"]
[-dblClickMacro "macro"] [-enterMacro "macro"]
[-exitMacro "macro"]}

Arguments The fieldId is a required string identifying this particular Entry field.
The same name is used by -nextId flags in other Entry fields and
nextID values in Form cells to access this field. It must be enclosed in
double quotes.

The -locked flag, if specified, indicates that the user cannot navigate
into, select, edit, or delete this field when in Forms mode.

The -minWidth width flag and value pair, if specified, indicate the
minimum displayed width of the Entry field. width should be an
integer in mils (there are 1000 mils per inch). If no minimum width is
specified, an empty Entry field will take up no width and will be
difficult for the end user to find. Note this flag is ignored if the field
splits across multiple lines.

The -maxChars num flag and value pair, if specified, indicate the
maximum number of characters that can be typed into the field in

Entry Field

Field Method Syntax 3-13

Forms mode. When this maximum number is reached, Words beeps
and then behaves in a manner dependent on the -nextIfFull flag, as
described below. If -maxChars is omitted, there is no limit to the
number of characters that can be entered into an Entry field.

The -nextIfFull flag, if specified, indicates that when an Entry field is
full, the cursor should be moved to the end of the next Entry field or
Form cell. The "next" object is identified by nextId, as described below.
This action only takes place in Forms mode, in the case where a
maximum number of characters has been specified for the Entry field
(via the -maxChars flag, as described above), and this limit has been
reached. If the -nextIfFull flag is omitted, the cursor will remain in the
full Entry field.

The -nextId "nextId" flag and value pair, if specified, indicate the id of
the Entry field or Form cell to which the cursor should be moved if the
user performs the Goto Next Cell operation (by default, this occurs
when the tab key is hit in Forms mode), or when the field fills up (as
specified by the -maxChars and -nextIfFull flags, above). If the
-nextId flag is omitted, the "next" object is the next Entry field or Form
cell following the current Entry field.

The -case caseFlag flag and value pair, if specified, indicate an
override to the case of text typed into the Entry field in Forms mode.
The caseFlag value is an integer as follows:

Table 3-5 caseFlag

caseFlag Effect on typed text

0 No effect

1 Convert to all lowercase

2 Convert to all uppercase

The -underline flag, if specified, draws an underline across the entire
width of the field, including the empty portion of the field (only

Entry Field

3-14 Words Technical Reference

relevant if -minWidth is specified as above). Unlike the gray shading
of the Entry field, the underline does print.

The -promptText "text" flag and value pair, if specified, indicate the
text that should appear on the status line at the bottom of the Words
window when the cursor is in the Entry field in Forms mode.

The -dblClickMacro "macro" flag and value pair, if specified, indicate
the macro to be executed when the Entry field is double-clicked on in
Forms mode. The specified macro will receive two arguments: the
bead number of the Field Start bead of the Entry field, and its fieldId.

The -enterMacro "macro" flag and value pair, if specified, indicate the
macro to be executed when the cursor enters the Entry field. The
specified macro will receive two arguments as described above.

The -exitMacro "macro" flag and value pair, if specified, indicate the
macro to be executed when the cursor leaves the Entry field. The
specified macro will receive two arguments as described above.

Interface Tools ➝ Forms ➝ Entry Fields and Form Cells

Footnote Field

Field Method Syntax 3-15

Footnote Field

Description When evaluated, the Footnote field generates a string representing the
current footnote number. This number is displayed in a superscripted
position at the field location. A "matching" Footnote Body field should
exist elsewhere in the document.

Format { footnote [-endDoc] [autoNumbering | textFlag "mark"] [evalFlags]
[textStyle] }

Arguments The -endDoc flag, if present, indicates that the matching footnote body
is placed at the end of the document. If it does not exist (which is the
default), the footnote body is placed at the bottom of the page that
contains the footnote field.

By default, the Footnote$ and FootnoteEndDoc$ series are used to
generate numbers for footnotes. The number that is displayed is one
more than the previous footnote of the same type. However, you can
modify or override value as follows:

• The autoNumbering flag can consist of one or both of the following
options:

-set number Forces the value to the specified
integer number

-series "seriesName" Overrides the default series with the
indicated series

• Alternatively, the textFlag can directly specify the footnote symbol
or string to use as follows:

Footnote Field

3-16 Words Technical Reference

-text "mark" mark must contain normal (Latin)
characters

-dtext "mark" mark is displayed in Dingbats
typeface

-stext "mark" mark is displayed in Symbol
typeface

For example, to create an asterisk-style footnote, use the following:

{ footnote -text "*" }

Interface Insert ➝ Footnote

Footnote Body Field

Description When evaluated, the Footnote Body field generates a string
representing a copy of the "matching" Footnote field (that is, the
footnote number or mark).

Format { footnote_body [evalFlags] [textStyle] }

Error Handling "No such footnote": Cannot find the matching footnote field.

Interface Insert ➝ Footnote

Glossary Field

Field Method Syntax 3-17

Glossary Field

Description When evaluated, the Glossary field copies the contents of the matching
glossary definition.

If the glossary definition has a "live" property, the field is reevaluated
when the glossary definition changes.

Format { glossary "glossaryName" [evalFlags] [textStyle] }

Arguments The glossaryName flag indicates the name of the glossary definition, as
displayed in the Inset ➝ Glossary ➝ Define Glossary and Insert ➝
Glossary ➝ Glossary dialog boxes. It should be enclosed in double
quotes.

Error Handling "glossaryName: No such glossary": The glossary definition specified in
the glossary field does not exist.

Interface Insert ➝ Glossary ➝ Define Glossary

Insert ➝ Glossary ➝ Glossary

HTML Tag Field

3-18 Words Technical Reference

HTML Tag Field

Description The HTML Tag field provides a place to store HTML tags that the
HTML to Words import filter cannot convert into Words material. The
Words to HTML export filter converts these fields back into the HTML
material. The field value will display the HTML tag only in the HTML
Author application when in Edit mode and the View HTML Tags
option is on. The field value is empty under all other circumstances.
This field is available starting in release 4.2.

Format { html_tag -text "htmlText" [textStyle] }

Arguments The -text "htmlText" flag and value pair specify the the HTML
material. For an HTML tag, this should include the leading and
terminating angle brackets

By convention, the HTML to Words import filter specifies a textStyle
of html_unknown_text for all HTML Tag fields, so that these fields will
be more easily identified.

Interface Insert ➝ HTML Tag (HTML Author only)

Hyperlink Field

Field Method Syntax 3-19

Hyperlink Field

Description When triggered, the Hyperlink macro moves the cursor to the first
matching Hypertarget field in the document. It first searches the main
flow, followed by the flows for footnotes, headers, and footers).

The Hyperlink field is not a separate field type; rather, it is a specific
instance of the Macro field.

Format { macro "wp_hyperlink@" -pass "targetName" -pass "linkFile"... }

Arguments As described above, the Hyperlink field is actually a Macro field.
When it is triggered, the ELF macro WP_HYPERLINK@ is called and
targetName and linkFile are passed to it. Both targetName and linkFile
may be specified, or one may be left as the empty string (-pass "")

If linkFile is not specified, this macro moves the cursor to the
Hypertarget field in the current document matching the targetName.

If linkFile is specified, if it is a document matching the current
application type (a Words document if running Words, or an HTML
document if running the HTML Author), the specified document is
opened in the current window. The the document does not match the
current application, a new application window is opened and the
specified document loaded into that window. As of release 4.3, it is
permissible for linkFile to be a URL. If targetName is specified as well,
the cursor is moved to the matching Hypertarget field; if not, the cursor
is left at the beginning of the document.

The remaining arguments are described in the Macro field section.

Interface Insert ➝ Hyperlink

Hypertarget Field

3-20 Words Technical Reference

Hypertarget Field

Description The Hypertarget field marks a location in the text. As of release 4.2, it
is allowed to contain text. Prior to this release, its field value was
always empty, and no action was ever taken when the field was
evaluated.

Format { hyper_target "targetName" [textFlag "textStr"] [evalFlags]
[textStyle]}

Arguments The targetName should be a unique string, enclosed in double quotes.
When a matching Hyperlink field is double-clicked, the cursor is
moved in front of the Hypertarget field.

The rest of the flags are only serviced in release 4.2 and later.

The textFlag and textStr pair determine what, if anything, is displayed
in the field value as follows:

Index Field

Field Method Syntax 3-21

-text "textStr" textStr is considered to consist of normal
(Latin) characters.

-dtext "textStr" textStr is displayed in Dingbats typeface.

-stext "textStr" textStr is displayed in Symbol typeface.

Interface Insert ➝ Hypertarget

Index Field

Description The Index field contains text that can be placed in an index. The field
value is always empty and no action is taken when the field is
evaluated.

Format { index "indexText" [-span] [-see "seeAlsoText"] }

Arguments The indexText is the string to place in the index. A colon character
separates entries that have multiple levels; for example,
"Animals:mammals:cats". The string must be enclosed in double
quotes.

The -span flag indicates that multiple entries are shown as a range of
pages rather than individual pages. For example, if you did not use
this flag for a set of Index Entry fields containing identical indexText
appears on pages 17, 18, and 19, the index entry would contain the

Index Field

3-22 Words Technical Reference

page references: "16, 17, 18". However, if all of these Index Entry fields
included the -span flag, the page reference would be "16-18".

The -see flag indicates that, instead of a page number, the seeAlsoText
is to be included in the index, preceded by "See" or "See also". For
example:

{ index "Animals:mammals:cats -see "felines" }

This field generates the entry "See also felines" under the "cats" entry,
unless it is the only item under "cats", in which case it generates "See
felines" next to "cats"

Interface Tools ➝ Book Building ➝ Index Entry

Link Field

Description When evaluated, the Link field converts the indicated, external file into
a format appropriate for display, and places the necessary material
(either a Picture bead, or the results of the conversion) into the field
value. When triggered, the link field opens the indicated file in its
"parent application". At this time, a user can edit it. Evaluation and
triggering of the field are separate actions.

The field value of a link field is not saved when the document is saved
(except for unprotected, non-picture insets). This means that the field
is reevaluated when the document is opened. In addition, the field is
reevaluated when the linked file is edited.

Format { link "linkFile" [-docType type] [-appType "type"]
[-picture] [-cvt "filterName"] [-app "filterName"]

Link Field

Field Method Syntax 3-23

[-view "viewName" [-ssObject | -ssView | -ssRange]]
 [-shrinkToFit] [-lastSection]
[-htmlAnchor "anchorURL"]
[evalFlags] [textStyle] }

Arguments The linkFile is the absolute or relative pathname of the file being
linked. It should be enclosed in double quotes. The linkFile is required.
As of release 4.3, it is permissible for linkFile to be a URL.

The -docType flag specifies one of the document type codes (an
integer) specified in the recgfil_.am file. This code represents the input
file type of the file being linked. Note this can represent an Applixware
file type or a foreign file type. Use 166 (AX_DOC_TYPE_UNKNOWN)
for document types unknown to Applixware (in this case, the -cvt flag
must be specified as described below)

The -appType flag indicates the Applixware application (via a quoted
string) corresponding to the type of material in the linked file. For
example, Applixware Graphics must be specified for a GIF file. The
values that you can use are specified within app_ids_.am. Here are
some of the values:

Table 3-6 appTypeCode Flags

values Application Type

"Words_" Applix Words

"Graphics_" Applix Graphics

"Spreadsheets_" Applix Spreadsheets

"Macros_" Applix Macros

"Icons_" Applix Bitmap

"Equations_" Applix Equation

"DATA_" Applix Data

Link Field

3-24 Words Technical Reference

Table 3-6 appTypeCode Flags (cont.)

"HTML_Authoring_" HTML

If the -picture flag is present, the linked file is treated as a picture object.
Otherwise, the linked file is represented by Words material. See the
Object section in Chapter 2 for more details.

The -cvt flag names the macro that converts the foreign file into an
Applixware file. Note the conversion is done automatically for foreign
documents that Applixware can automatically recognize and import.
You only need specify a macro if the file cannot be recognized.

The -app flag names the macro that is to be called when you double-
click on the linked file. If omitted, a standard macro will be called
based upon the doctype of the file (e.g. WP_START_INSET@ for an
Applixware Words file, WP_START_FRAME20_INSET@ for a Frame
2.0 file, etc.).

If the -view flag is present and the linked file is an Applix Spreadsheets
file, viewName specifies a named view, range, or chart; only the
appropriate material is displayed in the link. If the linked file is a non-
Applixware file, viewName is passed as an argument to the filterName
conversion filter described above. Note that as of release 4.3, a view
name specified in the picSource element of the Picture bead (for a
Spreadsheet picture inset) will override viewName, if any. The 4.3
release does however redundantly maintain the -view flag when
outputting the Words file for the benefit of previous releases.

As of release 4.4, the -ssObject, -ssView, and -ssRange flags modify
the -view flag by indicating whether the viewName specifies a chart,
named view, or named range respectively. Again, the data specified in
the picSource element of the Picture bead, if any, will override this
information. Release 4.3 and before will ignore these flags and take
their best guess as to what viewName represents.

If the -shrinkToFit flag is present, and the linked file represents a non-
picture Spreadsheet or Data object, the resulting table (representing the

Link Field

Field Method Syntax 3-25

view of the Spreadsheet or Data object) can be shrunk horizontally to
fit within the current margins. This flag has no effect for a picture inset.

If the -lastSection flag is present, and the linked file represents a non-
picture Words document, the final section break of the main flow of
the linked document is included in the field value. If the -lastSection
flag is absent, the final section break is omitted.

If a simple document is being linked (into the containing or "master"
document), this final section may control the entire page setup,
column, and header/footer information for the linked document.
Thus, this flag controls whether these attributes should be preserved
when the small document is linked within the master document, or
whether the material in the linked document should take on these
attributes from the section in the master document into which it falls.
For a Words document inset as a picture, this flag has no effect; the
section attributes of the linked document do not interact in any way
with those of the containing document.

The -htmlAnchor "anchorURL" flag and value pair, if present,
indicates to the HTML Author as well as the Words to HTML export
filter that the linked graphic is in fact a hyperlink to another HTML
document. In the HTML Author, in View mode, double-clicking on
the graphic will jump to the indicated document. This feature is
available starting in release 4.2, and only for an Applixware that has
the ability to fetch URLs. See the release 4.2 HTML documentation for
more details.

The -htmlImg was used only in release 4.2; it is now obsolete. The
value following this flag should now be specified as the linkFile as
described above..

Error Handling "Cannot evaluate circular link":
The named link appears more than one; for example,
A links to B links to C links to A is a circular reference.

Link Field

3-26 Words Technical Reference

"No such Chart, View, or Range in SS doc"
The indicated viewName does not appear in the linked
Spreadsheet.

Interface Insert ➝ Object from File ➝ [Application]

Local Inset Field

Description When evaluated, the Local Inset field converts the locally-stored data
object into a format appropriate for Words and includes it as the field
value. When triggered, the Object field opens the "parent application"
of the object, and allows the user to edit the object. Evaluation and
triggering of the field are separate actions.

The field value of a protected, non-graphic object is not saved when
the document is saved. This means that the field is reevaluated when
the document is opened.

Format { local_inset "objectName" [-docType type] [-appType "type"]
[-picture] [-cvt "filterName"] [-app "filtername"]
[-view "viewName" [-ssObject | -ssView | -ssRange]]
[-shrinkToFit] [-lastSection]
[-htmlAnchor "anchorURL"]
[evalFlags] [textStyle] }

Local Inset Field

Field Method Syntax 3-27

Arguments objectName is a string that uniquely identifies the object stored within
the document. This string is automatically generated when the object is
inset into the document. By default, objectName is a string in the series
"object1", "object2", and so on.

The stored objects are accessed using the Advanced button within the
Format ➝ Object ➝ Object Properties dialog box. A given object may
be in any Applixware or foreign format. As of release 4.3, Applixware
Words insets are supported within Words.

The -docType, -appType, -picture, -cvt, -app, -view, -ssObject,
-ssView, -ssRange, -shrinkToFit, -lastSection, and -htmlAnchor
flags work largely as described in "Link Field" above; simply substitute
"data stored within the containing Words document" in place of
"linked file" where applicable.

Interface Insert ➝ New Object ➝ [Application]

Macro Field

3-28 Words Technical Reference

Macro Field

Description When evaluated, the Macro field displays the desired text string. When
triggered using a double-click, the macro field executes an ELF macro.
Evaluation and triggering are separate actions.

Format { macro "macroName" [-pass "argStr"] textFlag "textStr" |
-textButton "textStr" [-buttonWidth width]] |
-glossary "glossaryName" [evalFlags] [textStyle] }

Arguments The macroName is the name of the ELF macro to be executed when the
field is triggered. The name should be enclosed in double quotes.

The -pass flag indicates that the following argStr is to be passed to the
ELF macro. The bead number of the Field Start bead of the Macro field
is also passed to the ELF macro (so the macro can determine, if
necessary, which field activated it). Any number of flag and argument
pairs can be specified, with the following effects:

Table 3-7 -pass Packaging

flag/arg pairs specified Arguments received by the ELF
macro

None 1 argument: Field Start bead number

One 2 arguments: argStr as a single string,
followed by Field Start bead number

More than one 2 arguments: Array of argStr strings,
followed by Field Start bead number

Macro Field

Field Method Syntax 3-29

The textFlag and textStr pair determine what is displayed in the field
value (unless explicitly written to do so, the ELF macro has no effect
on this) as follows:

-text "textStr" textStr is considered to consist of normal
(Latin) characters.

-dtext "textStr" textStr is displayed in Dingbats typeface.

-stext "textStr" textStr is displayed in Symbol typeface.

As an alternative to textFlag, the -textButton flag can be used to place
the subsequent textStr string in a graphical representation of a button.
The string is considered to consist of normal (Latin) characters. A
double-click on the button will trigger the macro. By default, the
button will be sized just large enough to contain the specified string. If
a wider button is desired, use the -buttonWidth width flag and value
pair to force a wider button; width is an integer representing the
desired button width, in mills (there are 1000 mils to the inch). Note
this value is ignored if it would make the button too narrow to contain
the text.

Another alternative to textFlag is the -glossary "glossaryName" flag
and value pair. If specified, the contents of glossary glossaryName are
displayed as the field value.

Interface Tools ➝ Special Fields ➝ Macro Button

Macro String Field

3-30 Words Technical Reference

Macro String Field

Description When evaluated, the Macro String field executes an ELF macro and
copies the returned string into the field value.

Format { macro_string "macroName" [-pass "argStr"] [-doubleClick]
 [evalFlags] [textStyle] }

Arguments The macroName is the name of the ELF macro to be executed when the
field is evaluated. The name must be enclosed in double quotes.

The -pass flag indicates that the following argStr is sent to the ELF
macro. The bead number of the Field Start bead of the Macro String
field is also passed to the ELF macro (so the macro can determine, if
necessary, which field activated it). Any number of flag and argument
pairs can be specified, with the following effects:

Table 3-8 -pass Packaging

flag/arg pairs specified Arguments received by the ELF
macro

None 1 argument: Field Start bead number

One 2 arguments: argStr as a single string,
followed by Field Start bead number

More than one 2 arguments: Array of argStr strings,
followed by Field Start bead number

The called macro should return a string that is placed in the field
value. If the macro throws an error, it is placed in the field value.

Make Index Field

Field Method Syntax 3-31

If the -doubleClick flag is present, double-clicking on the current field
value reevaluates the field.

Interface Tools ➝ Special Fields ➝ Macro String

Make Index Field

Description When evaluated, the Make_Index field generates a document’s index
by collecting the contents of all the Index fields in the document.

Format { make_index [groupSeparators] [evalFlags] [textStyle] }

Arguments The groupSeparators variable, if present, indicates how alphabetic
sections of the index will be separated, as follows:

Table 3-9 groupSeparators

Flag Meaning

-letterHeader Separate the index entries with each letter of the
alphabet (using the indexHeader$ style)

-blankHeader Separate each alphabetic group of index entries
with a blank line

-noHeader Run all index entries together as a single group

Interface Tools ➝ Book Building ➝ Create Index

Make Table of Contents Field

3-32 Words Technical Reference

Make Table of Contents Field

Description When evaluated, the Table of Contents field generates a table of
contents by collecting the text contents of certain paragraphs.

Format { make_TOC -styles "styleList" beforePageNum
[-maxLevel levelNumber] [-noPageNums "styleList2"]
[-stripTabs] [evalFlags] [textStyle] }

Arguments The -styles flag precedes the styleList, which is a comma-separated list
of styles. The text content of each paragraph of those styles that appear
in the main flow of the document is placed in the table of contents. The
styleList must be enclosed in double quotes.

The beforePageNum indicates the text separating the paragraph text
from the page number within the table of contents entries, as follows:

Table 3-10 beforePageNum Flags

Flag Meaning

-dotTab Insert a right-justified, dotted tab between the
paragraph text and the page number

This is the default if no flags are included

-plainTab Insert a right-justified tab between the
paragraph text and the page number

-noTab Insert three blank spaces between the
paragraph text and the page number

Make Table of Contents Field

Field Method Syntax 3-33

The -maxLevel flag precedes the integer levelNumber that indicates
the maximum level number for entries in the table of contents. If
specified, only the text contents of paragraphs (of the specified styles)
with this number or lower will appear in the table of contents. Note
level 1 is the minimum, and default, paragraph level. If absent, all
paragraphs of the specified styles will appear in the table of contents.
Note this option might be used, for example, for creating a table of
contents for the higher levels of an outline document.

The -noPageNums flag precedes the styleList2 parameter, which is a
comma-separated list of styles. If present, this list should be a subset of
the styleList. Table of contents entries for these styles are not followed
by a page number. The styleList2 should be enclosed in double quotes.

The optional -stripTabs flag, if present, removes the tab stops from the
table of contents styles and replaces the tab characters in the table of
contents paragraphs with two spaces each (however, if the user
specifies a tab before the page number, this tab and tab stop will not be
removed). This flag may be useful in cases where the page number
does not align to the right margin, due to a mismatch between tabs
and tab stops in the table of contents paragraphs.

Interface Tools ➝ Book Building ➝ Create Table of Contents

Merge Field

3-34 Words Technical Reference

Merge Field

Description When evaluated during a merge operation, the Merge field copies the
contents of a cell of the current row in the merge data file. Manual
evaluation has no effect, however.

Format { merge "fieldName" [-rowAdvance advanceNumber]
 [-rowOffset offsetNumber] [-usePara] [textStyle] }

Arguments The fieldName identifies a column of the merge data table. The column
is identified by matching fieldName with the text in the top row of the
table. The cell in the current row of the data table that falls into this
column is copied into the field value of the Merge field. The fieldName
must be enclosed in double quotes.

The -rowAdvance flag forces the current row of the merge data table
to be advanced by advanceNumber rows, where advanceNumber is a
positive or negative integer. (The Print Merge operation automatically
advances the current row by one on each print cycle.) This action
occurs before the cell of the data table is identified and copied.

The -rowOffset flag temporarily advances the current row of the
merge data table by offsetNumber rows, where offsetNumber is a
positive or negative integer. This action occurs before the field is
evaluated, and is reversed immediately afterwards. This option allows,
for example, reference to the previous or next record while the current
record is being processed.

Both the -rowAdvance and -rowOffset flags can be specified for a
single field. The sum of advanceNumber and offsetNumber will alter

Merge Field

Field Method Syntax 3-35

the current row before field evaluation; only offsetNumber will be
undone after the evaluation.

If the -usePara flag is absent (the default), the contents of the
appropriate merge data table cell, excluding the final paragraph
marker, are copied into the field value.

If the -usePara flag is present, the entire cell including the final
paragraph marker are copied. However, if the cell only contains an
empty paragraph, nothing is copied. This feature can be used to avoid
blank lines due to empty data table cells (in a document that uses
successive lines of data from the table). If a column in the data table
can contain an empty cell, instead of following the merge field with a
paragraph marker (that will force a blank line), omit the paragraph
marker and include the -usePara flag for this field.

Error Handling The following messages may be inserted into the field value:

Missing a numeric
argument

The -rowAdvance flag was not immediately
followed by the integer advanceNumber, or the -
rowOffset flag was not immediately followed by
the integer offsetNumber

Record not found The merge data table has run out of records, or the
-rowAdvance or -rowOffset flags have specified a
record beyond the range of the table

Specified field
name not in
data table

The fieldName was not found in the first row of
the merge data table

Short row in
data table

The current row of the merge data table is too
short and does not contain a cell in the desired
column

Interface Insert ➝ Merge Field

Page Count Field

3-36 Words Technical Reference

Page Count Field

Description When evaluated, the Page Count field generates the number of pages
in the document. As the document is edited, Page Count fields are
reevaluated.

Format { page_count }

Interface Insert ➝ Page Numbering ➝ Page Count

Page Number Field

Description When evaluated, the Page Number field generates the formatted page
number. While value is displayed and printed, it is not inserted into
the field value. In a header or footer, a Page Number field can appear
on more than one page and it displays a different value on each page.
As the document is edited, Page Number fields are reevaluated.

The page number format is defined by the current section’s definition.

Format { page_number }

Plain Field

Field Method Syntax 3-37

Arguments None.

Interface Insert ➝ Page Numbering ➝ Page Number

Plain Field

Description The Plain field provides a method of enclosing arbitrary material
within a field. No action is taken when the field is evaluated, other
than servicing textStyle, if any. This field was implemented in release
4.3. There is currently no user interface to create this type of field; it
must be created via an ELF macro.

Format { plain [textStyle] }

Arguments None.

The Plain field is primarily intended as a simple way to apply a text
style to some material, with no other side effects.

Interface None

Plain Field

3-38 Words Technical Reference

Printer Code Field

Description The Printer Code field provides a method of passing special codes to
the printer during a print operation. The field value is always empty,
and no action is taken when the field is evaluated. This field was
implemented in release 4.1. There is currently no user interface to
create this type of field; it must be created via an ELF macro.

Format { printer_code [printerType] [-text "text" | -ascii code]... }

Arguments The printerType variable indicates the type of printer for which the
code is intended, as follows:

Table 3-11 printerType

Flag Meaning

-pcl A PCL printer (the default, if omitted)

-postscript A Postscript printer

-gdi A GDI (Windows) printer

A series of printer codes can follow the printerType, as described
below.

Table 3-12 Printer codes

Flag Meaning of value

-text "text" = a quoted string of Latin characters,
representing printer codes.

Series Field

Field Method Syntax 3-39

Table 3-12 Printer codes

-ascii code = an integer representing a printer code

Interface None

Series Field

Description When evaluated, the Series field generates a string representing the
next item of an ordered series, at the appropriate level.

Format { series "seriesName" [valueFlag] [-noDisplay]
[levelNumber] [evalFlags] [textStyle] }

Arguments The seriesName is the name of the series as it is displayed in the Edit
Numbered Series dialog box. The name must be enclosed in double
quotes.

The valueFlag indicates the number used to generate the formatted
string. If omitted (the default), the value is one more than the previous
instance of this series. Otherwise, valueFlag can be one of the
following:

Series Field

3-40 Words Technical Reference

Table 3-13 valueFlags

Flag Meaning

-noIncrement Uses the same value as as the previous instance
of this series

This could be used, for example, in a document
consisting of numbered subsections where the
subsection number needs to be displayed within
the contents of the subsection (for example, for a
figure number)

-set number Forces the value to the specified integer number

For example, if the series "Outline" used the A,
B, C numbering style, { series "Outline" -set 4 }
would generate ’D’

The -noDisplay flag, if present, causes the generated field value to be
empty. However, the number is "still in the document" as far as
subsequent series fields are concerned. For example, this feature could
be used to reset the numbering of lists at given points in the document,
as follows:

Table 3-14 View Field Method Modes

View Field Method Mode Normal Display

Engines:{ series "List" -set 0 -nodisplay} Engines:

{ series "List" }Thomas 1. Thomas

{ series "List" }James 2. James

Coaches:{ series "List" -set 0 -nodisplay} Coaches:

{ series "List" }Anna 1. Anna

{ series "List" }Claribel 2. Claribel

Soft Hyphen Field

Field Method Syntax 3-41

If the optional -level flag is omitted, the paragraph’s level determines
the level within the series definition to use. If this flag is present, the
integer levelNumber specifies a level to use in place of the paragraph’s
level.

For example, if you have a single-level series appear in paragraphs that
had levels larger than one (to cause them to indent), you would want
the series field always to be evaluated at level one. For example:

{ series "List" -level 1 }

Interface Tools ➝ Insert Numbered Field

Soft Hyphen Field

Description The Soft Hyphen field marks a preferred hyphenation point. Its field
value is always empty. No action is taken when the field is evaluated.

If a word containing a Soft Hyphen field needs to be hyphenated, it
will be hyphenated at the field location, if possible.

Format { - }

Arguments None.

Interface CTRL - (hyphen) Key combination

Time Field

3-42 Words Technical Reference

Time Field

Description When evaluated, the Time field generates a string representing the
current time in the desired time format.

Format { time -format "formatStr" | formatCode [evalFlags] [textStyle] }

Arguments The -format "formatStr" flag and value pair specify the exact format of
the time to be displayed in the field value. The string consists of a
mixture of hour, minute, second, and am/pm codes with
miscellaneous text. For example, the string "hh:mi" would yield (for
example) "09:34"; note the preservation of the colon. A list of the hour,
minute, second, and am/pm codes can be found in the file datetime.sp
under the Applixware release directory, or in help under the
description of the DATE_FORMAT@ macro. Note the use of formatStr
is new for release 4.1. For earlier releases, the formatCode should be
used as described below.

The formatCode is an integer representing a time format, as shown
below. Release 4.0 and earlier will ignore the formatStr and use the
formatCode. Note that it is acceptable to specify both a formatCode
and a formatStr; earlier releases will use the former and later releases
the latter.

Table 3-15 Time Formats

formatCode Matching formatStr Display

0 HH:mi:ss 14:58:20

Variable String Field

Field Method Syntax 3-43

Table 3-15 Time Formats

1 hh:mi pm 2:58 pm

2 HH:mi 14:58

3 12hh:mipm 2:58pm

4 HH.mi 14.58

5 HHmi 1458

Interface Insert ➝ Date & Time

Variable String Field

Description When evaluated, the Variable String field generates a string
representing the contents of the desired document variable.

The Variable String field is reevaluated whenever the referenced
document variable changes value.

Format { var_string "varName" [evalFlags] [textStyle] }

Variable String Field

3-44 Words Technical Reference

Arguments varName is the name of the document variable (as displayed in the
Tools ➝ Special Fields ➝ Set Document Variables dialog box). It must
be enclosed in double quotes. The way in which the variable is
represented depends upon its type and is as follows:

Table 3-16 Variable Types

Variable type Representation

Number or String The variable’s value

One-dimensional array A separate paragraph is generated for each
array item

Two-dimensional array A table is generated with a row for each
item in the major array and a cell for each
item in the secondary arrays

Anything else The following error is displayed: "ERROR:
Variable is of incorrect type"

An empty string is generated if varName does not exist.

Interface Tools ➝ Special Fields ➝ Variable String

1

Index

Symbols
* comment lines 1-8
- field See Soft Hyphen field
16-bit characters 1-7
8-bit characters 1-6

A
Align

text in cells 1-16
Anchored frames 2-18
APPLIX EQUATIONS> 1-59
Applix Words statement 1-9, 1-10, 1-11,

1-12, 1-13, 1-14, 1-15, 1-18, 1-19, 1-21,
1-22, 1-23, 1-24, 1-25
sequence 1-13, 1-14, 1-15, 1-18, 1-19,

1-21, 1-22, 1-23, 1-24, 1-25, 1-26, 1-
28, 1-29, 1-34, 1-36, 1-43, 1-44, 1-
46, 1-47

supported properties 1-48, 1-49, 1-
50, 1-51, 1-52, 1-53, 1-54, 1-56, 1-
57

Applixware keywords 1-8
appTypeCode 1-48
app_ids_.am 1-49
ASCII 1-4
asciiData 1-49

Attributes
See also inherited attributes
inherit 2-22
local 2-25
of frame 1-28, 1-52
of text 1-28, 1-57

Audio 1-49

B
Bead 2-3, 2-5, 2-15

cell end 2-6
definition 2-3
field 2-12
macros 2-5
marker 2-28
number 2-5
object 2-33
offset 2-34
section 2-41
style 2-46
tag 2-48
text 2-50

Bead number 2-27
Bead start format 2-27
Beads 2-20, 2-51

location
tracking 2-28

BEGIN 1-5
BINARY 1-4
binaryData 1-50

2 Words Technical Reference

Bitmap 1-49
Bold 1-57
Border

paragraph 1-28
borderAttributes 1-50
Borders

around cells 2-6, 1-15
Brackets 1-9
Break

in equations 1-65
line break 1-25
page break 1-28

Breaks 2-6

C
Case

of text in cells 1-15
CE 1-15
Cell 2-6
Cell border and shading 2-6
Cell borders 1-15
Cell End bead 2-6
Cell Id 2-16
Cell properties 2-6, 2-16
Cell shading 1-15
Cell width 2-6, 1-18
Cells 2-40
CELL_END 1-14, 1-15
Change bars 1-28, 1-51

position 1-19
changedFlag 1-51
Characters

16-bit 1-7
8-bit 1-6
escape 1-6, 1-7, 1-12
multi-byte 1-6

wide 1-6
Clip

picture 1-31, 1-32
COLOR 1-13, 1-18
Color

of text 1-57
Column 2-8
Column gutters 2-41
Columns 1-36

number of 2-41
related macros 2-8
user interface 2-8

COLUMN_BREAK 1-14, 1-18
Comment lines 1-8
Conditional Variable field 3-6
Continuation lines 1-5
Conventions 1-2, 3-3, 1-9, 1-10
Crop

picture 1-31, 1-32
Cross Reference field 3-7
Cross Reference Source field 3-9
Cross-reference field values 2-21
Current selection 2-9, 2-38, 2-44

related macros 2-9
Cursors 2-9

location 2-27
related macros 2-9

D
Data 1-49
Datatypes 1-4
Date

of modification 1-22
reevaluate field 1-22

Date field 3-10
Default header 2-20

Index 3

Demote macro 2-22
docTypeCode 1-51
DOCUMENT_BEGIN 1-13, 1-19, 1-58,

1-59
DOCUMENT_END 1-13, 1-20, 1-58,

1-59
DOC_VARIABLE 1-14, 1-18
Double-click macro 2-17
Duplex printing 1-37

E
Edit

field method 3-2
Edit field 1-22
elfData 1-51
elfDataArray 1-51
elfStringArray 1-52
Embedded data 1-5
Embedded object 2-10, 2-11, 1-21, 3-26
Empty document beads 2-29
emptyValue 3-5
ENCODING 1-4, 1-19
END 1-5
END datatype 1-4
END EQUATIONS 1-59
End format 2-38
END MACROS 1-20
END WORDS 1-20
Endnotes 1-22
END_DOCUMENT 1-20
end_field 1-22
end_footnote 1-23
end_glossary 1-24
end_hdrftr> 1-25
end_styles 1-47
end_vars 1-48

Entry field 3-12
Entry macro 2-17
Envelope 1-40
eqn_begin 1-59
eqn_end> 1-59
EQUATION 1-13
Equation 1-59
Equation file format 1-58, 1-59, 1-60,

1-61, 1-63, 1-65
Equation properties 1-61, 1-62, 1-63,

1-65
EQUATION-SETTINGS 1-58
Equations 1-49
EQUATIONS 1-4
EQUATION_BEAD_BEGIN 1-58
EQUATION_BEAD_END 1-58, 1-59
EQUATION_BEAD_START 1-59
EQUATION_BEGIN 1-58, 1-59
EQUATION_END 1-58, 1-59
EQUATION_SETTINGS 1-60
ERROR 1-13
Error 1-21
Escape characters 1-6, 1-7, 1-12
Escape sequences 1-49
evalFlags 3-4
Evaluate

field 2-11
Evaluate field 3-2
Evaluation 3-2, 2-11, 2-14
Even page 1-28
Example statement definition 1-10
Exit macro 2-17

F
Facing pages 1-19
Field 3-1, 2-12

4 Words Technical Reference

bead 2-12
edit 3-2
embedded object 2-10
error 3-3
evaluate 3-2, 3-4, 2-11
footnote See Footnote
glossary See Glossary Definition &

Glossary Field
linked object 2-24
method 3-1
related macros 2-11, 2-12
style 3-5
syntax 3-1
text attributes 3-5
unprotected 1-22
user interface 2-11

Field End bead 2-12
Field method 3-2, 2-13, 2-14

user interface 2-13
Field method value

related macros 2-14
Field methods

related macros 2-13
Field Split bead 2-12
Field Start bead 2-12
Field type

Conditional Variable 3-6
Cross Reference 3-7
Cross Reference Source 3-9
Date 3-10
Entry 3-12
Footnote 3-15
Footnote Body 3-16
Glossary 3-17
HTML Tag 3-18
Hyperlink 3-19
Hypertarget 3-20

Index 3-21
Link 3-22
Local Inset 3-26
Macro 3-28
Macro String 3-30
Make Index 3-31
Make Table Of Contents 3-32
Merge 3-34
Page Count 3-36
Page Number 3-36
Plain 3-37
Printer Code 3-38
Series 3-39
Soft Hyphen 3-41
Time 3-42
Variable String 3-43

Field value 3-2, 2-14
user interface 2-14

Fields
protected 2-14

FIELD_BEGIN 1-14, 1-21
FIELD_END 1-14, 1-22
FIELD_VALUE 1-14, 1-22
File

app_ids_.am 1-49
File format 1-1

equations 1-61, 1-63, 1-65
File header 1-3, 1-4
float 1-11
flow 2-14
Flow

See also Main flow
main 2-14, 2-15, 2-29
related macros 2-15

Flows 2-35
FLOW_BEGIN 1-13, 1-22
FLOW_END 1-13, 1-23

Index 5

Footer 2-20
Footer

See also Header & Footer
in section 1-38

Footer margins 1-20
Footnote 2-15, 1-21

bottom-of-page 2-16
display as endnotes 1-22
end-of-document 2-16

Footnote body 2-15
Footnote Body field 3-16
Footnote field 3-15
Footnote reference 2-15
FOOTNOTE_BEGIN 1-14, 1-23
FOOTNOTE_END 1-14, 1-23
Foreign application 2-24
Foreign applications 2-10
Form mode properties 2-17
Forms and Form mode 2-16
Frame 2-18, 1-28, 1-52
Frame properties 2-18
frameAttributes 1-52

G
Globals 1-19
Glossary

name 1-46
Glossary definition 2-19
Glossary field 3-17, 2-19
GLOSSARY_BEGIN 1-13, 1-23
GLOSSARY_END 1-13, 1-24
Graphics 1-48
GRAPHICS 1-14
graphics 1-24
GRAPHICS 1-4

H
hdrFtrReference 1-53
HDRFTR_BEGIN 1-14, 1-24
HDRFTR_END 1-14, 1-25
Header 1-3, 1-4, 2-20

in section 1-38
Header & Footer 2-20
Header margins 1-20
Heading

of table 1-35
Height

picture 1-32
hexData 1-50
HTML Author 1-49
HTML Tag field 3-18
Hyperlink field 3-19
Hypertarget field 3-20
Hyphenation 1-20

I
I-bar cursor 2-9
id

of cell 1-16
of footnote 1-21, 1-23
of next cell 1-17
of next cell after maxChars 1-17

if_var field 3-6
if_var field See Conditional Variable

field
Indent

row 1-35
Indent paragraphs 1-20
Index field 3-21
Index Field 3-31

6 Words Technical Reference

Inheritance 2-47
Inherited Attributes 2-22
Insertion 2-9
Inset See Object
int 1-11
Italic 1-57
Items 1-9

J
Justify

row 1-35

K
keywords 1-8

L
Landscape mode 1-37
Last

cell in row 1-16
Letter 1-40
Level 2-22

of series 1-44
Line break 1-7
Line length 1-5
Lines

comment 1-8
continuation 1-5

LINE_BREAK 1-14, 1-25
Link 1-25
LINK 1-5, 1-14
Link field 3-22
Linked files 2-25
Linked object 2-10, 2-11, 3-22, 2-24

localize 2-26
Links 1-5

Local attributes 2-25, 2-47, 2-50
Local Inset field 3-26
Local text attributes 2-14
Localize 2-26

linked object 2-26
Location 2-27

tag 2-48
Lock cell 1-17
Locked 2-16

M
Macro 1-19, 1-20

convert non-Applixware object 1-27
executed in cell 1-16
non-Applixware object 1-26

Macro field 3-28
Macro String field 3-30
MACROS 1-4
Macros 1-49

bead related 2-5
column related 2-8
current selection 2-9
cursor related 2-9
Field methods related 2-13
field related 2-11, 2-12
field value related 2-14
flow related 2-15
object related 2-11
table related 2-7, 2-8
with tables 2-6

Main flow 2-14, 2-15, 2-35, 2-42
Make Index field 3-31
make_TOC field See Table of Contents

field
Margins 1-36, 1-38, 2-41

of footer 1-20

Index 7

of header 1-20
of material in cells 1-17

MARKER 1-13
marker 1-25
Marker

paragraph 2-36
Marker bead 2-28
Matrix

in equations 1-68
matrixColAlign 1-61
matrixRowAlign 1-61
Maximum characters

in cell 1-17
Merge field 3-34
Method, field

See also Field
edit 3-2

mils 1-12
Multi-Byte Characters 1-6
Multi-cell selection 2-29

N
Name

of glossary 1-46
of picture 1-32
of series 1-44
of style 1-29, 1-47

Next cell 1-17
Next Cell Id 2-16
Normal viewing mode 2-13, 2-14
Number

Bead number 2-5

O
Object 1-21, 2-31, 2-33

OBJECT 1-14, 1-25, 1-26
Object

date last modified 1-22
embedded 2-10, 2-11, 3-26, 2-31
linked 2-10, 2-11, 3-22, 2-24, 2-31
localize 2-26
picture 2-24, 2-31
Picture 2-36
picture 2-10, 3-24
related macros 2-11
user interface 2-10

Object bead 2-33
Odd page 1-28
Offset 2-27, 2-34
Offset

See also Bead
row 2-39

P
Page

count 1-39
facing pages 1-36
size 1-38

Page Count field 3-36
Page number

start value 1-39
style 1-39

Page Number field 3-36
Page number field values 2-21
Page numbering format 2-42
Page orientation 1-37, 2-41
Page size 2-41
Pages

facing 1-19
PAGE_BREAK 1-14, 1-28
Paper size 1-40

8 Words Technical Reference

PARA 1-13, 1-28
paraAttributes 1-54
Paragraph 2-35

bead 2-35
Paragraph attributes 2-18, 2-26, 2-47
Paragraph bead 2-3, 2-15, 2-16, 2-35
Paragraph bead See Bead
Paragraph indentation 2-22
Paragraph marker 2-36
Paragraph marker See Paragraph and

paragraph bead
Paragraphs

indent 1-20
Parent Application 2-31
PICTURE 1-13, 1-29
Picture 2-36

scale 1-32
pileAlign 1-62
Place marker 2-48
Plain field 3-37
points 1-12
Portrait mode 1-37
preserveVal 3-5
Print

both sides of page 1-37
Print tray

destination 1-40
source 1-41

Printer Code field 3-38
printEval 3-4
Promote macro 2-22
Prompt

in cell 1-18
Protected field 1-22
Protected fields 2-14

Q
QUERYDATA 1-4

R
Range 2-38, 2-44
Range

See also Location
selection 2-29

readEval 3-4
Recording 2-51
Redo 2-51
Reevaluate field 1-22
Release 3 1-4
Row 2-6

height 1-35
indent 1-35
last cell in row 1-16

Row justification 1-35
Row Start bead 2-39
Rows 2-8, 2-39, 2-48
ROW_START 1-13, 1-34
RS 1-34

S
saveEval 3-4
Scale

of picture 1-32
picture 1-31, 1-32

SECTION 1-13, 1-14, 1-36
Section 2-41
SECTION 1-35
Section

number 1-41
number style 1-42

Index 9

number value 1-42
type 1-38

Section bead 2-41, 2-42
Section properties 2-43
Selection 2-44

current 2-9
multi-cell 2-29
range 2-29
simple 2-45

SERIES 1-13, 1-43, 1-44
Series

level 1-44
Series definition & series field 2-44
Series field 3-39
Series fields 2-22
Series level 1-45, 1-46
Shading

in cells 2-6, 1-15
Simple selection 2-45
Size

of text 1-57
Soft Hyphen field 3-41
Spreadsheets 1-49
SPREADSHEETS 1-4
START datatype 1-4
START EQUATIONS 1-59
Start format 2-38
START WORDS VERSION 1-19
start_data 1-49, 1-50
start_field 1-21
start_flow 1-22
start_footnote 1-23
start_glossary 1-23
start_hdrftr 1-24
start_styles 1-47
start_vars 1-48
Statement 1-9, 1-10, 1-11, 1-12, 1-13,

1-14, 1-15, 1-18, 1-19, 1-21, 1-22, 1-23,
1-24, 1-25
line length 1-5
LINK 1-5
sequence 1-13, 1-14, 1-15, 1-18, 1-19,

1-21, 1-22, 1-23, 1-24, 1-25, 1-26,
1-28, 1-29, 1-34, 1-36, 1-43, 1-44,
1-46, 1-47

supported properties 1-48, 1-49,
1-50, 1-51, 1-52, 1-53, 1-54, 1-56,
1-57

Statement definition
example 1-10

Statement sequence 1-13, 1-14
string 1-12
STYLE 1-13, 1-46
Style 2-46
STYLE 1-13, 1-46
Style

attributes 2-22
name 1-29, 1-47

Style definition 2-19, 2-46
Style hierarchy 2-46
STYLES_BEGIN 1-13, 1-47
STYLES_END 1-13, 1-47
subequations 1-61
Subscript 1-58

in equations 1-68
Superscript 1-58

in equations 1-68
symbol 1-62
symbolAttributes 1-63

T
tabDefinitions 1-56
Table 2-48

10 Words Technical Reference

cell 2-6
column 2-8
row 2-39
row height 1-35

Table of Contents field 3-32
Tables 2-16

related macros 2-7, 2-8
user interface 2-7

Tabs 1-28, 1-56
tabStop 1-56
Tag 2-48
TEMPLATE 1-58, 1-61
templateType 1-63
TEXT 1-13, 1-47
Text

bold 1-57
color 1-57
italic 1-57
size 1-57
typeface 1-57
underline 1-57

Text attributes 1-28
Text bead 2-3, 2-50
textAttributes 1-57
TextStyle flag 3-5
Time field 3-42
tmpl 1-61
Typeface 1-57

U
Underline 1-57
Undo 2-51
Unprotected field 1-22
Update glossary 1-23
URL 3-19, 3-23, 2-24

as picture name 1-32

V
variable 1-18
Variable String field 3-43
Variable types 1-11
VARS_BEGIN 1-14, 1-48
VARS_END 1-14, 1-48
var_string field See Variable String field
VERSION 1-4
Version

3 1-4

W
Wide characters 1-6
Width

of cell 1-18
picture 1-32

WORDS 1-4
Words 1-48
Words statement 1-9, 1-10, 1-11, 1-12,

1-13, 1-14, 1-15, 1-18, 1-19, 1-21, 1-22,
1-23, 1-24, 1-25
sequence 1-13, 1-14, 1-15, 1-18, 1-19,

1-21, 1-22, 1-23, 1-24, 1-25, 1-26,
1-28, 1-29, 1-34, 1-36, 1-43, 1-44,
1-46, 1-47

supported properties 1-48, 1-49,
1-50, 1-51, 1-52, 1-53, 1-54, 1-56,
1-57

WP_ADD_TAG@ 2-49
WP_BEAD_INFO_DLG@ dialog box

2-3
wp_cell_attrs@ 2-7
wp_frame@ 2-19
WP_GET_MARKER_BEAD@ 2-28

Index 11

WP_GET_NEXT_SELECTION@ 2-30
WP_GET_TAG_LOCATION@ 2-49
wp_hdrftr@ 2-21
wp_hyperlink@ macro 3-19
WP_INSERT_MARKER_BEAD@ 2-28
wp_inset_info@ 2-37
wp_row_attrs@ 2-40
WP_TAG_INFO_DLG@ 2-49
WP_UNDO_ACTIVATE@ 2-51
WP_UNDO_END@ 2-51
WP_UNDO_START@ 2-51

X
xref field See Cross Reference field
xref_source field See Cross Reference

Source field

Symbols
\n 1-7

12 Words Technical Reference

	Copyright
	Contents
	Tables
	Preface
	Chapter 1 - File Format
	Chapter 2 - Technical Terms
	Chapter 3 - Field Method Syntax
	Index

